skip to main content

PERBAIKAN PROFIL TEGANGAN DENGAN PENEMPATAN SHUNT COMPENSATION MENGGUNAKAN METODE INDEKS PERFORMA KONTINGENSI

*Fasda Ilhaq Robbani scopus  -  Jurusan Teknik Elektro Fakultas Teknik, Universitas Muhammadiyah Surakarta, Indonesia
Muhammad Izzuddin Fadhlurrohman  -  Jurusan Teknik Elektro Fakultas Teknik, Universitas Muhammadiyah Surakarta, Indonesia
Kelvin Zakki Pradana  -  Jurusan Teknik Elektro Fakultas Teknik, Universitas Muhammadiyah Surakarta, Indonesia
Dikirim: 28 Jun 2024; Diterbitkan: 31 Okt 2024.
Akses Terbuka Copyright (c) 2024 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Pertumbuhan beban yang terus meningkat menjadi tantangan bagi penyedia layanan listrik. Peningkatan beban harus diiringi dengan peningkatan kualitas dan keamanan sistem guna menjaga kestabilan sistem operasi. Peningkatan beban secara terus menurus dapat mengakibatkan ketidaksbilan tegangan. FACTS merupakan peralatan semikonduktor yang dapat memperbaiki kualitas sistem salah satunya adalah kualitas tegangan. Salah satu jenis FACTS yang sering digunakan adalah Static Var Compensator (SVC). SVC merupakan peralatan semiconductor daya yang dapat menyerap dan memberi daya reaktif pada sistem sehingga dapat menjaga kestabilan tegangan pada sistem tersebut. Dengan metode yang diangkat didapatkan saluran yang kritis yaitu pada saluran bus 5 dan bus 6 serta didapatkan pula bus yang kritis yaitu bus 4, bus 5 dan bus 14 sebagai lokasi penempatan SVC yang optimal. Hasil dari studi CPF memiliki hasil yang sama dengan hasil IPK dimana didapatkan salah satu bus yang sensitif, yaitu bus 5. Penempatan SVC pada bus 5 mendapatkan hasil yang terbaik ditandai dengan peningkatan nilai MLP sebesar 8,9% serta terjadi peningkatan tegangan kritis pada bus 5 sebesar 16,28%.
Fulltext View|Download
Kata Kunci: Analisis kontingensi; Continuation Power Flow (CPF); Kestabilan tegangan; Maximum loading parameter (MLP); Static Var Compensator (SVC).;

Article Metrics:

  1. PLN, “Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030.,” Rencana Usaha Penyediaan Tenaga Listrik 2021-2030, pp. 2019–2028, 2021
  2. C. Hermanu, M. Nizam, and F. I. Robbani, “Optimal Placement of Unified Power Flow Controllers (UPFC) for Losses Reduction and Improve Voltage Stability Based on Sensitivity Analysis in 500 kV Java-Bali Electrical Power System,” Proceeding - 2018 5th International Conference on Electric Vehicular Technology, ICEVT 2018, pp. 83–87, 2019, doi: 10.1109/ICEVT.2018.8628455
  3. P. Kundur, Power System Stability and Control, Vol 1. New York: McGraw-Hill, 1994
  4. F. I. Robbani, S. P. Hadi, and L. M. Putranto, “Placement of Various FACTS Devices in Voltage Stability Analysis Based on Critical Bus,” AIP Conf Proc, vol. 2865, no. 1, Dec. 2023, doi: 10.1063/5.0185325/2931908
  5. S. A. Mohamed and A. M. M. Abdel-Rahim, “Comprehensive Study of Reactive Power and its Compensation Using Shunt-Connected FACTS Device,” 2019 21st International Middle East Power Systems Conference, MEPCON 2019 - Proceedings, pp. 348–353, 2019, doi: 10.1109/MEPCON47431.2019.9008033
  6. S. Gasperic and R. Mihalic, “Estimation of the efficiency of FACTS devices for voltage-stability enhancement with PV area criteria,” Renewable and Sustainable Energy Reviews, vol. 105, no. May 2018, pp. 144–156, 2019, doi: 10.1016/j.rser.2019.01.039
  7. A. AL Ahmad and R. Sirjani, “Optimal placement and sizing of multi-type FACTS devices in power systems using metaheuristic optimisation techniques: An updated review,” Ain Shams Engineering Journal, vol. 11, no. 3, pp. 611–628, 2019, doi: 10.1016/j.asej.2019.10.013
  8. K. Kavitha and R. Neela, “Optimal allocation of multi-type FACTS devices and its effect in enhancing system security using BBO, WIPSO & PSO,” Journal of Electrical Systems and Information Technology, vol. 5, no. 3, pp. 777–793, 2018, doi: 10.1016/j.jesit.2017.01.008
  9. B. Singh and G. Agrawal, “Enhancement of voltage profile by incorporation of SVC in power system networks by using optimal load flow method in MATLAB/Simulink environments,” Energy Reports, vol. 4, pp. 418–434, Nov. 2018, doi: 10.1016/j.egyr.2018.07.004
  10. R. Jena, S. C. Swain, and R. Dash, “Power flow simulation & voltage control in a SPV IEEE-5 bus system based on SVC,” Mater Today Proc, vol. 39, pp. 1934–1940, 2019, doi: 10.1016/j.matpr.2020.08.374
  11. A. Wiguna B, D. Despa, H. Gusmedi, and A. Haris, “Penempatan SVC (Static Var Compensator) Untuk Memperbaiki Profil Tegangan Pada Jaringan Transmisi PT. PLN Lampung,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 4, no. 3, pp. 1–8, 2016, doi: 10.23960/jitet.v4i3.542
  12. J. G. Jamnani and M. Pandya, “Coordination of SVC and TCSC for management of power flow by particle swarm optimization,” Energy Procedia, vol. 156, pp. 321–326, 2019, doi: 10.1016/j.egypro.2018.11.149
  13. S. Raj and B. Bhattacharyya, “Optimal placement of TCSC and SVC for reactive power planning using Whale optimization algorithm,” Swarm Evol Comput, vol. 40, no. July 2016, pp. 131–143, 2018, doi: 10.1016/j.swevo.2017.12.008
  14. M. Tarafdar Hagh, M. B. B. Sharifian, and S. Galvani, “Impact of SSSC and STATCOM on power system predictability,” International Journal of Electrical Power and Energy Systems, vol. 56, pp. 159–167, 2014, doi: 10.1016/j.ijepes.2013.11.025
  15. R. Jena and S. C. Swain, “Comparative Analysis of STATCOM And TCSC FACTS Controller For Power,” no. Icces, pp. 407–413, 2017
  16. F. B. K. Mahmood et al., “Weakest location exploration in IEEE-14 bus system for voltage stability improvement using STATCOM, synchronous condenser and static capacitor,” ECCE 2017 - International Conference on Electrical, Computer and Communication Engineering, pp. 623–629, 2017, doi: 10.1109/ECACE.2017.7912980
  17. W. Aslam, Y. Xu, A. Siddique, and F. M. Albatsh, “Implementation of series facts devices SSSC and TCSC to improve power system stability,” Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, ICIEA 2018, pp. 2291–2297, 2018, doi: 10.1109/ICIEA.2018.8398092
  18. A. Siddique, Y. Xu, W. Aslaml, and F. M. Albatsh, “Application of series FACT devices SSSC and TCSC with POD controller in electrical power system network,” Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications, ICIEA 2018, pp. 893–899, 2018, doi: 10.1109/ICIEA.2018.8397839
  19. Y. Manganuri, P. Choudekar, Abhishek, D. Asija, and Ruchira, “Optimal location of TCSC using sensitivity and stability indices for reduction in losses and improving the voltage profile,” 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, ICPEICES 2016, pp. 1–4, 2017, doi: 10.1109/ICPEICES.2016.7853573
  20. X. Shen, H. Luo, W. Gao, Y. Feng, and N. Feng, “Evaluation of optimal UPFC allocation for improving transmission capacity,” Global Energy Interconnection, vol. 3, no. 3, pp. 217–226, 2020, doi: 10.1016/j.gloei.2020.07.003
  21. X. Shen, H. Luo, W. Gao, Y. Feng, and N. Feng, “Evaluation of optimal UPFC allocation for improving transmission capacity,” Global Energy Interconnection, vol. 3, no. 3, pp. 217–226, 2020, doi: 10.1016/j.gloei.2020.07.003
  22. S. Alamelu, S. Baskar, C. K. Babulal, and S. Jeyadevi, “Optimal siting and sizing of UPFC using evolutionary algorithms,” International Journal of Electrical Power and Energy Systems, vol. 69, pp. 222–231, 2015, doi: 10.1016/j.ijepes.2014.12.081
  23. S. D. Choudante and A. A. Bhole, “A Review: Voltage Stability and Power Flow Improvement by Using UPFC Controller,” 7th IEEE International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC 2018, pp. 462–465, 2018, doi: 10.1109/ICCPEIC.2018.8525161
  24. S. R. Paital, S. Patra, A. K. Singh, A. Mohanty, and P. K. Ray, “Reactive power compensation using PSO controlled UPFC in a microgrid with a DFIG based WECS,” 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, pp. 2–6, 2016, doi: 10.1109/INDICON.2015.7443660
  25. H. Gusmedi and L. H. J. Legita, “Analisis Kontigensi Saluran Transmisi Dengan Menggunakan Indeks Performa Tegangan (PIV) Dan Indeks Performa Daya Aktif (PIMW),” Seminar Nasional Insinyur Profesional (SNIP), vol. 2, no. 1, 2022, doi: 10.23960/snip.v2i1.79
  26. A. Nur Widiastuti, L. Multa Putranto, and R. Ramono Syamri Jurusan Teknik Elektro dan Teknologi Informasi, Studi Kestabilan Tegangan Jaringan IEEE 9 Bus Menggunakan Indeks Kestabilan Tegangan. 2013
  27. A. N. Zeinhom, “Optimal sizing and allocation of Unified Power Flow Controller (UPFC) for enhancement of Saudi Arabian interconnected grid using Genetic Algorithm (GA),” 2016 Saudi Arabia Smart Grid Conference, SASG 2016, pp. 2–7, 2017, doi: 10.1109/SASG.2016.7849670
  28. E. Nanda Kumar, R. Dhanasekaran, and R. Mani, “Optimal location and improvement of voltage stability by UPFC using genetic algorithm (GA),” Indian J Sci Technol, vol. 8, no. 11, 2015, doi: 10.17485/ijst/2015/v8i11/71778
  29. “Optimal Sizing and Allocation of Unified Power Flow 2016”
  30. K. Khatua and N. Yadav, “Voltage stability enhancement using VSC-OPF including wind farms based on Genetic algorithm,” International Journal of Electrical Power and Energy Systems, vol. 73, pp. 560–567, 2015, doi: 10.1016/j.ijepes.2015.05.007
  31. L. Foltyn, J. Vysocký, G. Prettico, M. Běloch, P. Praks, and G. Fulli, “OPF solution for a real Czech urban meshed distribution network using a genetic algorithm,” Sustainable Energy, Grids and Networks, vol. 26, p. 100437, 2021, doi: 10.1016/j.segan.2021.100437
  32. S. R. Inkollu and V. R. Kota, “Optimal setting of FACTS devices for voltage stability improvement using PSO adaptive GSA hybrid algorithm,” Engineering Science and Technology, an International Journal, vol. 19, no. 3, pp. 1166–1176, 2016, doi: 10.1016/j.jestch.2016.01.011
  33. A. R. Bhowmik, A. K. Chakraborty, and P. N. Das, “Placement of UPFC for minimizing active power loss and total cost function by PSO algorithm,” Proceedings of the 2013 International Conference on Advanced Electronic Systems, ICAES 2013, pp. 217–220, 2013, doi: 10.1109/ICAES.2013.6659395
  34. K. Kavitha and R. Neela, “Comparison of BBO, WIPSO & PSO Techniques for the Optimal Placement of FACTS Devices to Enhance System Security,” Procedia Technology, vol. 25, no. Raerest, pp. 824–837, 2016, doi: 10.1016/j.protcy.2016.08.186
  35. M. Nadeem et al., “Optimal placement, sizing and coordination of FACTS devices in transmission network using whale optimization algorithm,” Energies (Basel), vol. 13, no. 3, 2020, doi: 10.3390/en13030753
  36. Sugiyanto, Adi Soeprijanto, and Ni Ketut Aryani, “THE STUDY OF VOLTAGE STABILITY ANALYSIS ON TRANSMISSION LINE SYSTEM PAITON-GRATI SUBSYSTEM IN EAST JAVA USING LINE COLLAPSE PROXIMITY INDEX METHOD,” Sepuluh November Institute of Technology, Surabaya, 2017
  37. R. A. Moradi and R. Zeinali Davarani, “Introducing a new index to investigate voltage stability of power systems under actual operating conditions,” International Journal of Electrical Power and Energy Systems, vol. 136, Mar. 2022, doi: 10.1016/j.ijepes.2021.107637
  38. M. Kamel, F. Li, S. Bu, and Q. Wu, “A generalized voltage stability indicator based on the tangential angles of PV and load curves considering voltage dependent load models,” International Journal of Electrical Power and Energy Systems, vol. 127, no. December 2020, p. 106624, 2021, doi: 10.1016/j.ijepes.2020.106624
  39. M. A. Jirjees, D. A. Al-Nimma, and M. S. M. Al-Hafidh, “Voltage Stability Enhancement based on Voltage Stability Indices Using FACTS Controllers,” International Iraqi Conference on Engineering Technology and its Applications, IICETA 2018, pp. 141–145, 2018, doi: 10.1109/IICETA.2018.8458094
  40. S. Ratra, R. Tiwari, and K. R. Niazi, “Voltage stability assessment in power systems using line voltage stability index,” Computers and Electrical Engineering, vol. 70, pp. 199–211, 2018, doi: 10.1016/j.compeleceng.2017.12.046
  41. M. Moghavvemi and M. O. Faruque, “Technique for assessment of voltage stability in Ill-conditioned radial distribution network,” IEEE Power Engineering Review, vol. 21, no. 1, pp. 58–60, 2001, doi: 10.1109/39.893345
  42. A. Yazdanpanah-Goharrizi and R. Asghari, “A Novel Line Stability Index (NLSI) for Voltage Stability Assessment of Power Systems,” Proceedings of the 7th WSEAS International Conference on Power Systems, pp. 164–167, 2007
  43. I. Musiri and T. K. Abdul Rahman, “On-line voltage stability based contingency ranking using fast voltage stability index (FVSI),” Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, vol. 2, no. ASIA PACIFIC, pp. 1118–1123, 2002, doi: 10.1109/TDC.2002.1177634
  44. S. Ratra, R. Tiwari, and K. R. Niazi, “Voltage stability assessment in power systems using line voltage stability index,” Computers and Electrical Engineering, vol. 70, pp. 199–211, Aug. 2018, doi: 10.1016/j.compeleceng.2017.12.046
  45. I. Musirin and T. K. Abdul Rahman, “Novel fast voltage stability index (FVSI) for voltage stability analysis in power transmission system,” 2002 Student Conference on Research and Development: Globalizing Research and Development in Electrical and Electronics Engineering, SCOReD 2002 - Proceedings, pp. 265–268, 2002, doi: 10.1109/SCORED.2002.1033108
  46. H. Pratikto, S. P. Hadi, and L. M. Putranto, “Analisis Stabilitas Tegangan Sistem Tenaga Listrik 500 kV Jawa Bali dengan Fast Voltage Stability Index (FVSI),” Jurnal Penelitian Teknik Elektro dan Teknologi Informasi, vol. 1, no. 1, pp. 17–23, 2014
  47. I. G. Adebayo, A. A. Jimoh, and A. A. Yusuff, “Detection of weak bus through Fast Voltage Stability index and inherent structural characteristics of power system,” 2015 4th International Conference on Electric Power and Energy Conversion Systems, EPECS 2015, 2015, doi: 10.1109/EPECS.2015.7368536
  48. X. Dong et al., “Calculation of optimal load margin based on improved continuation power flow model,” International Journal of Electrical Power and Energy Systems, vol. 94, pp. 225–233, 2018, doi: 10.1016/j.ijepes.2017.07.004
  49. M. M. Aman, G. B. Jasmon, A. H. A. Bakar, and H. Mokhlis, “Optimum network reconfiguration based on maximization of system loadability using continuation power flow theorem,” International Journal of Electrical Power and Energy Systems, vol. 54, pp. 123–133, 2014, doi: 10.1016/j.ijepes.2013.06.026
  50. K. Karthikeyan and P. K. Dhal, “Multi verse optimization (MVO) technique based voltage stability analysis through continuation power flow in IEEE 57 bus,” Energy Procedia, vol. 117, pp. 583–591, 2017, doi: 10.1016/j.egypro.2017.05.153
  51. M. A. Kamarposhti, M. Alinezhad, H. Lesani, and N. Talebi, “Comparison of SVC, STATCOM, TCSC, and UPFC controllers for static voltage stability evaluated by continuation power flow method,” 2008 IEEE Electrical Power and Energy Conference - Energy Innovation, 2008, doi: 10.1109/EPC.2008.4763387
  52. R. Pourbagher, S. Y. Derakhshandeh, and M. E. Hamedani Golshan, “An adaptive multi-step Levenberg-Marquardt continuation power flow method for voltage stability assessment in the Ill-conditioned power systems,” International Journal of Electrical Power and Energy Systems, vol. 134, no. June 2021, p. 107425, 2022, doi: 10.1016/j.ijepes.2021.107425
  53. R. Yudhianto, S. P. Hadi, and M. I. BS, “Analisis Kontingensi saluran Pada Sistem Transmisi 150 KV Sumatera bagian Selatan,” Gadjah Mada, 2015. [Online]. Available: http://etd.repository.ugm.ac.id/penelitian/detail/78713
  54. Y. Mohamad, E. Hasan Harun, and J. Teknik Elektro, “ANALISIS KONTINGENSI PADA SISTEM TENAGA LISTRIK SULAWESI UTARA-GORONTALO,” 2019
  55. IEEE, “Data Sheets for IEEE 14, 30, 62 Bus System,” 2003

Last update:

No citation recorded.

Last update: 2024-11-21 17:39:00

No citation recorded.