skip to main content

OPTIMALISASI LOKASI PEMBANGKIT TERDISTRIBUSI ENERGI TERBARUKAN DENGAN METODE ALIRAN DAYA

*IBK Sugirianta publons  -  Program Studi Doktor Ilmu Teknik, Fakultas Teknik, Universitas Udayana, Indonesia
IAD Giriantari  -  Program Studi Doktor Ilmu Teknik, Fakultas Teknik, Universitas Udayana, Indonesia
WG Ariastina  -  Program Studi Doktor Ilmu Teknik, Fakultas Teknik, Universitas Udayana, Indonesia
IB. Alit Swamardika  -  Program Studi Doktor Ilmu Teknik, Fakultas Teknik, Universitas Udayana, Indonesia
Dikirim: 26 Agu 2024; Diterbitkan: 31 Okt 2024.
Akses Terbuka Copyright (c) 2024 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari

Energi surya fotovoltaik (Solar PV) merupakan salah satu solusi energi terbarukan yang ramah lingkungan dan memiliki potensi signifikan untuk dikembangkan sebagai bagian dari integrasi sistem pembangkit terdistribusi (Distributed Generation/DG). DG memainkan peran penting dalam meningkatkan efisiensi sistem tenaga listrik, terutama dalam mengurangi rugi-rugi daya listrik serta meningkatkan kestabilan tegangan jaringan. Penempatan DG yang optimal diharapkan dapat mengurangi rugi-rugi daya dan memperbaiki kestabilan tegangan. Penelitian ini bertujuan untuk meminimalkan rugi-rugi daya total serta meningkatkan kestabilan tegangan menggunakan metode analisis aliran daya yang diimplementasikan melalui perangkat lunak Digsilent. Simulasi aliran beban dilakukan pada sistem distribusi standar 14 bus dengan memasang Solar PV sebagai DG pada setiap bus guna menentukan lokasi penempatan DG yang optimal. Validasi hasil dilakukan dengan membandingkan performa jaringan sebelum dan sesudah penempatan Solar PV sebagai DG. Hasil penelitian menunjukkan bahwa penempatan DG yang optimal dapat mengurangi rugi-rugi daya hingga mencapai indeks sebesar 0,752.

Fulltext View|Download
Kata Kunci: aliran daya,;digsilent; indek rugi daya; stabilitas tegangan; pembangkit terdistribusi;;

Article Metrics:

  1. T. Hasarmani, R. Holmukhe, A. Gandhar, and S. Bhardwaj, “Optimum Sizing and Performance Assessment of Solar PV-DG Hybrid System for Energy Self Sufficiency of Jaggery Making Units,” in Proceedings of B-HTC 2020 - 1st IEEE Bangalore Humanitarian Technology Conference, 2020. doi: 10.1109/B-HTC50970.2020.9297885
  2. V. V. S. N. Murty and A. Kumar, “Optimal placement of DG in radial distribution systems based on new voltage stability index under load growth,” International Journal of Electrical Power and Energy Systems, vol. 69, 2015, doi: 10.1016/j.ijepes.2014.12.080
  3. U. Sultana, A. B. Khairuddin, M. M. Aman, A. S. Mokhtar, and N. Zareen, “A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system,” 2016. doi: 10.1016/j.rser.2016.05.056
  4. S. A. Salimon, G. A. Adepoju, I. G. Adebayo, H. O. R. Howlader, S. O. Ayanlade, and O. B. Adewuyi, “Impact of Distributed Generators Penetration Level on the Power Loss and Voltage Profile of Radial Distribution Networks,” Energies (Basel), vol. 16, no. 4, 2023, doi: 10.3390/en16041943
  5. N. Naik and S. Vadhera, “Power Loss Minimization and Voltage Improvement with Small Size Distributed Generations in Radial Distribution System Using TOPSIS,” in Lecture Notes in Electrical Engineering, 2020. doi: 10.1007/978-981-15-0206-4_9
  6. R. O. Bawazir and N. S. Cetin, “Comprehensive overview of optimizing PV-DG allocation in power system and solar energy resource potential assessments,” 2020. doi: 10.1016/j.egyr.2019.12.010
  7. U. E. Uzun, N. Pamuk, and S. Taskin, “Effect of Solar Photovoltaic Generation Systems on Voltage Stability,” in IEEE Global Energy Conference, GEC 2022, 2022. doi: 10.1109/GEC55014.2022.9986740
  8. Y. Gupta, S. Doolla, K. Chatterjee, and B. C. Pal, “Optimal DG Allocation and Volt-Var Dispatch for a Droop-Based Microgrid,” IEEE Trans Smart Grid, vol. 12, no. 1, 2021, doi: 10.1109/TSG.2020.3017952
  9. S. Kaur, G. Kumbhar, and J. Sharma, “A MINLP technique for optimal placement of multiple DG units in distribution systems,” International Journal of Electrical Power and Energy Systems, vol. 63, 2014, doi: 10.1016/j.ijepes.2014.06.023
  10. O. D. Montoya, W. Gil-González, and L. F. Grisales-Noreña, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Engineering Journal, vol. 11, no. 2, 2020, doi: 10.1016/j.asej.2019.08.011
  11. E. Mahdavi, S. Asadpour, L. H. Macedo, and R. Romero, “Reconfiguration of Distribution Networks with Simultaneous Allocation of Distributed Generation Using the Whale Optimization Algorithm,” Energies (Basel), vol. 16, no. 12, 2023, doi: 10.3390/en16124560
  12. K. S. El-Bidairi, H. D. Nguyen, T. S. Mahmoud, S. D. G. Jayasinghe, and J. M. Guerrero, “Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia,” Energy, vol. 195, 2020, doi: 10.1016/j.energy.2020.117059
  13. A. K. ALAhmad, “Voltage regulation and power loss mitigation by optimal allocation of energy storage systems in distribution systems considering wind power uncertainty,” J Energy Storage, vol. 59, 2023, doi: 10.1016/j.est.2022.106467
  14. Q. Li, Y. Tao, Z. Li, Y. Zhang, and Z. Zhang, “Simulation and modeling for active distribution network BESS system in DIgSILENT,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.01.113
  15. R. K. Chillab, A. S. Jaber, M. Ben Smida, and A. Sakly, “Optimal DG Location and Sizing to Minimize Losses and Improve Voltage Profile Using Garra Rufa Optimization,” Sustainability (Switzerland), vol. 15, no. 2, 2023, doi: 10.3390/su15021156
  16. P. Harish Kumar and R. Mageshvaran, “Load flow analysis and optimal allocation of DG for Indian utility 62 bus power system,” International Journal on Emerging Technologies, vol. 11, no. 2, 2020
  17. E. M. Abdallah, M. I. Elsayed, M. M. ELgazzer, and A. A. Hassan, “Coyote multi-objective optimization algorithm for optimal location and sizing of renewable distributed generators,” International Journal of Electrical and Computer Engineering, vol. 11, no. 2, pp. 975–983, Apr. 2021, doi: 10.11591/ijece.v11i2.pp975-983
  18. S. Vidyasagar, K. Vijayakumar, D. Sattianadan, and S. George Fernandez, “Optimal placement of DG based on voltage stability index and voltage deviation index,” Indian J Sci Technol, vol. 9, no. 38, 2016, doi: 10.17485/ijst/2016/v9i38/101930
  19. R. Deshmukh and A. Kalage, “Optimal Placement and Sizing of Distributed Generator in Distribution System Using Artificial Bee Colony Algorithm,” in Proceedings - 2018 IEEE Global Conference on Wireless Computing and Networking, GCWCN 2018, 2018. doi: 10.1109/GCWCN.2018.8668633
  20. J. M. Roldan-Fernandez, F. M. Gonzalez-Longatt, J. L. Rueda, and H. Verdejo, “Modelling of Transmission Systems Under Unsymmetrical Conditions and Contingency Analysis Using DIgSILENT PowerFactory,” 2014. doi: 10.1007/978-3-319-12958-7_2

Last update:

No citation recorded.

Last update: 2025-01-21 09:28:00

No citation recorded.