Impact of Overfishing on Density and Test-Diameter Size of the Sea Urchin Tripneustes gratilla at Wakatobi Archipelago, South-Eastern Sulawesi, Indonesia

*La Nane  -  Universitas Negeri Gorontalo, Indonesia
Arfiani Rizki Paramata  -  Universitas Negeri Gorontalo, Indonesia
Received: 18 Jan 2020; Revised: 3 Apr 2020; Accepted: 9 Apr 2020; Published: 27 May 2020; Available online: 14 Apr 2020.
Open Access License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

Sea urchin Tripneustes gratilla is one of an economically important fisheries resource product for localities at Wakatobi archipelago. High demands for sea urchin gonad have intensified high fishing activity. The hypothesis of this study is that sea urchins in Wakatobi have been overfished. To answer that hypothesis, the density and its test diameter size were measured at two different sites. Those two sites are Pulau Tomia (resident area) and Pulau Sawa (nonresident area and very distant from the localities). The results show that sea urchin density and its test diameter are significantly different.  The densities (mean±SE) T. gratilla at Pulau Sawa and Pulau Tomia were 10±0.6 (ind.m-2) and 2.7±0.9 ind.m-2, respectively. Moreover, the test diameter at Pulau Sawa and Pulau Tomia were 69.7±2.1 mm and 58.5±1.7 mm (mean±SE), respectively. These results have shown that overfishing has occurred. Therefore, sea urchin with test diameter 66–75 mm, 76–85 mm, and 86–95 mm have disappeared at Pulau Tomia. The Conclusion reveals that fishing of sea urchin Tripneustes gratilla at Pulau Tomia has been overfished.

Keywords: density; test diameter; sea urchin; overfishing; Wakatobi

Article Metrics:

  1. A.G., Creaser, E.P., Barnes, D.K., Botsford, L.W., Bradbury, A., Campbell, A., Dixon, J.D. & Einarsson, S. 2002. Status and management of world sea urchin fisheries. Oceanog. Mar. Biol. Annual Rev. 40: 351-438. https://doi.org/10.1201/9780203180594-26
  2. Baião, L.F., Rocha, F., Costa, M., Sá, T., Oliveira, A., Maia, M.R. & Valente, L.M. 2019. Effect of protein and lipid levels in diets for adult sea urchin Paracentrotus lividus (Lamarck, 1816). Aquaculture, 506:127-138. https://doi.org/10.1016/j.aquaculture.2019.03.005
  3. Bronstein, O. & Loya, Y. 2014. Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs. J. Exp. Mar. Biol. Ecol., 456: 8-17. https://doi.org/10.1016/j.jembe.2014.03.003
  4. Brown, P.N. & Eddy, E.S. 2015. Echinoderm aquaculture. Wiley Blackwell, Hoboken. doi: https://doi.org/10.1002/9781119005810
  5. Kato, S. 1972. Sea urchins: A new fishery develops in California. Mar. Fish. Rev., 34: 9-10
  6. Keesing, J.K. & Hall, K.C. 1998. Urchin aquaculture: molecules to market- Review of harvests and status of world sea urchin fisheries points to opportunities for aquaculture. J. Shellfish Res., 17: 1597-1608
  7. Koike, I., Mukai, H. & Nojima, S. 1987. The role of the sea urchin, Tripneustes gratilla (Linnaeus), in decomposition and nutrient cycling in a tropical seagrass bed. Ecol. Res. 2: 19-29. https://doi.org/10.1007/BF02348616
  8. Lawrence, J.M. 2007. Edible sea urchins: biology and ecology. Elsevier Science, Amsterdam
  9. Lesser, P. & Walker, C.W. 1998. Introduction to the special section on sea urchin aquaculture. J. Shellfish Res., 17: 1505-1506
  10. Ling, S.D., Barrett, N.S. & Edgar, G.J. 2018. Facilitation of Australia's southernmost reef-building coral by sea urchin herbivory. Coral Reefs, 37(4): 1053-1073. https://doi.org/10.1007/s00338-018-1728-4
  11. Luza, J.C.S. & Malay, M.C.M.D. 2019. Feeding preferences of the sea urchin Diadema setosum (Leske, 1778) in Taklong Island National Marine Reserve, Guimaras, Philippines. PeerJ Preprints, 7: e27733v1. https://doi.org/10.7287/peerj.preprints.27733v1
  12. Mos, B. & Dworjanyn, S.A. 2019. Ready to harvest? Spine colour predicts gonad index and gonad colour rating of a commercially important sea urchin. Aquaculture, 505:510-516. https://doi.org/10.1016/j.aquaculture.2019.03.010
  13. Robinson, S.M.C. 2004. The evolving role of aquaculture in the global production of sea urchins. Sea Urchins: Fisheries and Ecology (Lawrence, J.M. ed.), pp. 343-357. DEStech Publications Inc, Lancaster, PA, USA
  14. Salvo, A., Cicero, N., Vadalà, R., Mottese, A. F., Bua, D., Mallamace, D., Gianetto, C. & Dugo, G. 2016. Toxic and essential metals determination in commercial seafood: Paracentrotus lividus by ICP-MS. Nat. Product Res., 30(6): 657-664. https://doi.org/10.1080/14786419.2015.1038261
  15. Sloan, N. 1985. Echinoderm Fisheries of the World: A Review, pp. 109-124. AA Balkema, Rotterdam, Amsterdam. https://doi.org/10.1201/9781003079224-14
  16. Steneck, R.S. 2013. Sea urchins as drivers of shallow benthic marine community structure. In: Lawrence JM (ed.) Sea urchins: biology and ecology. Elsevier, San Diego, pp 195-212. https://doi.org/10.1016/B978-0-12-396491-5.00014-9
  17. Sun, J. & Chiang, F.S. 2015. Use and exploitation of sea urchins. In N. P. Brown, & S. D. Eddy (Eds.). Echinoderm aquaculture (pp. 25-45). https://doi.org/10.1002/9781119005810.ch2
  18. Taylor, A.M., Heflin, L.E., Powell, M.L., Lawrence, A.L., & Watts, S.A. 2017. Effects of dietary carbohydrate on weight gain and gonad production in small sea urchins, Lytechinus variegatus. Aquacul. Nutrition, 23(2): 375-386. https://doi.org/10.1111/anu.12403
  19. Widodo, J. & Suadi 2006 Marine Fisheries Resource Management. Yogyakarta: Gajah Mada University Press., 252 pp

Last update: 2021-04-22 08:50:09

No citation recorded.

Last update: 2021-04-22 08:50:09

No citation recorded.