The Potential of Cytotoxin and Antiviral in Sargassum polycystum and Sargassum ilicifolium’s Polysaccharides Extract

*Dwi Lestari Widya Ningsih  -  Marine Science Study Program, Diponegoro University, Indonesia
Agus Trianto  -  Marine Science Study Program, Diponegoro University, Indonesia
Ita Widowati  -  Marine Science Study Program, Diponegoro University, Indonesia
Rexie Magdugo  -  Université Bretagne Sud, France
Anicia Hurtado  -  Integrated Services for the Development of Aquaculture and Fisheries, Philippines
Christel Marty  -  Université Bretagne Sud, France
Nathalie Bourgougnon  -  Université Bretagne Sud, France
Received: 7 May 2020; Revised: 3 Jul 2020; Accepted: 7 Jul 2020; Published: 2 Sep 2020; Available online: 2 Aug 2020.
Open Access License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Abstract

Marine algae known as one producers of bioactive compounds.  This study aims to analyze the cytotoxicity and antiviral activity in Sargassum polycystum and Sargassum ilicifolium tested with Herpes Simplex Virus (HSV).   The polysaccharides extract of algae was used in this study, as sulfated polysaccharides have been reported has bioactivity.  Cytotoxicity either antiviral could be correlated with the sulfate content as well as nature and chemical composition of the polysaccharides. Cytotoxicity and antiviral analysis based upon cell viability. Using the Vero cell / HSV-1 model, cytotoxicity was evaluated by incubating cellular suspensions (3.5×105 cells.mL-1) with various dilutions (concentration from 1 to 500 µg.mL-1, four wells per concentration) of fractions in 96-well plates (72h, 37°C, 5% CO2) in Eagle's MEM containing 8% FCS.  The cells were examined daily under a phase-contrast microscope to determine the minimum concentration of hydrolysate dry matter that induced alterations in cell morphology, including swelling, shrinkage, granularity and detachment. Algae S. illicifolium was found to have the highest cytotoxic content in each solution compared to S. polycystum. Algae S. illicifolium in KOH 4M (cellulose) reached 2,707 µg.ml-1, then HCl pH 2 (fucoidan) was 2,477 µg.ml-1, then CaCl2 2% (fucoidan) was 2,362 µg.ml-1, and in Na2CO3 3% (alginates) was 2,134 µg.ml-1. For antiviral, S. polycystum contained the highest antiviral compounds compared to S. illicifolium with KOH 4M (cellulose) solution was reached 67.02 µg.ml-1.  Then in Na2CO3 3% (alginates) which was 33.25 µg.ml-1, then CaCl2 2% (fucoidan) which was 31.62 µg.ml-1,and HCl pH 2 (fucoidan) was 30.08 µg.ml-1.  After all, the highest bioactivity compounds was found with KOH 4M (cellulose) for  cytotoxicity in S. ilicifolium and antiviral activity in S. polycystum.

Keywords: bioactivity; seaweed; Sargassum sp; Herpes Simplex Virus (HSV)
Funding: Nathalie Bourgougnon, Universite de Bretagne Sud

Article Metrics:

  1. Aquino, R.S., Grativol, C. & Mourão, P,A,S. 2011. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. Plos One 6:1-7. https://doi.org/10.1371/journal.pone.0018862
  2. Chayavichitsilp, P., Buckwalter, J.V. & Krakowski. A.C. 2009. Herpes simplex. Pediatr. Rev. 30(4):119-29. https://doi.org/10.1542/pir.30-4-119
  3. Chen, L. & Huang, G. 2018. The Antiviral Activity of Polysaccharides and Their Derivatives. Int. J. Bio. Mac. 115:77-82. https://doi.org/10.1016/j.ijbiomac.2018.04.056
  4. Eom, S., Kang, Y., Park, J., Yu, D., Jeong, E., Lee, M. & Kim, Y. 2011. Enhancement of polyphenol content and antioxidant activity of brown alga Eisenia bicyclis extract by microbial fermentation. Fisch. Aquat. 14: 192-197. https://doi.org/10.5657/FAS.2011.0192
  5. Gebreyohannes, G. 2014. Human Herpes Simplex Virus Categories, Mode of Transmission, Treatment and Precentive Measures. Int. J. Pharm & H. Care Res. 02(04):211-226
  6. Guo, Q., Qiang, S., Wenping, X., Lei, R., Ryo, S., Fumio, E., Zandong, L. 2017. Immunomodulatory and Anti-IBDV Activities of The Polysaccharide AEX from Coccomyxa gloebotrydiformis. Mar. Drugs. 15(2):36. https://doi.org/10.3390/md15020036
  7. Hardouin, K., Burlot, A.S., Umami, A., Tanniou, A., Stiger-Pouvreau, V., Widowati, I., Bedoux, G. & Bourgougnon, N. 2013. Bioactive antiviral enzymatic hydrolysates from different invasive French seaweeds. XXIst Int. Seaweed Symp. pp.21-26. https://doi.org/10.1007/s10811-013-0201-6
  8. Holzinger, A. & Karsten, U. 2013. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Plant. Sci., 4:327. https://doi.org/10.3389/fpls.2013.00327
  9. Jaulneau, V., Lafitte, C., Jacquet, C., Fournier, S., Salamagne, S., Briand, X., Esquerré-Tugayé, M.T., Dumas, B. 2010 Ulvan, a sulphated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. J. Biomed. Biotechnol., 2010:1-11. https://doi.org/10.1155/2010/525291
  10. Kelman, D., Posner, E.K., McDermid, K.J., Tabandera, N.K., Wright, P.R., & Wright, A.D. 2012. Antioxidant activity of Hawaiian marine algae. Mar. Drugs., 10: 403-416. https://doi.org/10.3390/md
  11. Laine J., Kuvaja-Köllner V. & Pietilä E. 2014. Cost-effectiveness of population-level physical activity interventions: a systematic review. Am. J. Health Promot. 29(2):71-80. https://doi.org/10.4278/ajhp.131210-LIT-622
  12. Mišurcová, L., Orsavová, J. & Vávra Ambrožová, J., 2015 Algal Polysaccharides and Health. Polysaccharid. Bioactiv. Biotechnolog. https://doi.org/10.1007/978-3-319-03751-6_24-1
  13. Mustafa, M., EM.Illzam, R.K. Muniandy., A.M. Sharifah., M.K.Nang., B. Ramesh. 2016. Herpes simplex virus infections, Pathophysiology and Management. J. Dental Med. Sci., 15:85-91. https://doi.org/10.9790/0853-150738591
  14. Peréz, M.J., Elena, F., Herminia, D. 2016. Antimicrobial Action of Compounds of Marine Seaweed. Mar. Drugs., 14(3):52. https://doi.org/10.3390/md14030052
  15. Razonable, R.R. 2011. Antiviral Drugs for Viruses Other Human Immunodeficiency Virus. Mayo. Clin. Proc. 86(10):1009-1026. https://doi.org/10.4065/mcp.2011.0309
  16. Rodrigues, J.A.G., Quinderé, A.L.G., de-Queiroz. I.N.L., Coura, C.O. & Benevides. N.M.B 2012. Comparative study of sulfated polysaccharides from Caulerpa spp. (Chlorophyceae). Biotechnological tool for species identification. Acta Sci. Biol. Sci., 34(4):381-389. https://doi.org/10.4025/actascibiolsci.v34i4.8976
  17. Rodriguez-Medina, E.M., Bribian, A., Boyd, A., Palomo, V., Pastor, J., Lagares, A., Gil, C., Martinez, A., Williams, A. & de Caestro, F. 2017. Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis. Sci. Rep., 7:43545. https://doi.org/10.1038/srep43545
  18. Setyawidati, N., Kaimuddin, A.H., Wati, I.P., Helmi, M., Widowati, I., Rossi, N., Liabot, P.O. & Stiger-Pouvreau, V. 2018. Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at Libuk Island, Malasoro Bay, Indonesia. J. Appl. Phycol., 30(1):159-171. https://doi.org/10.1007/s10811-017-1208-1
  19. Shin, T., Ahn, M., Hyun, J.W., Kim, S.H. & Moon, C. 2014. Antioxidant marine algae phlorotannins and radioprotection: A review of experimental evidence. Acta Histochem. 116:669-674. https://doi.org/10.1016/j.acthis.2014.03.008
  20. Thirumurugan, G., M.D. Dhanaraju. 2017. Marine Polysaccharides as Multifunctional Pharmaceutical Excipients. Biological Activities and Application of Marine Polysaccharides. p. 129. https://doi.org/10.5772/66191
  21. Vadlapudi, A.D., Vadlapatla, R.K. & Mitra, A.K. 2013. Update on emerging antivirals for the management of herpes simplex virus infections: a patenting perspective. Recent Pat. Antiinfect. Drug Discov., 8(1).55-67. https://doi.org/10.2174/1574891X11308010011
  22. Xu, Shu-Ying., Xuesong, H. & Kit-Leong, C. 2017. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure and Activities. Mar. Drugs., 15(12):388. https://doi.org/10.3390/md15120388

Last update: 2021-02-25 10:05:31

No citation recorded.

Last update: 2021-02-25 10:05:36

No citation recorded.