The Potential of Cytotoxin and Antiviral in Sargassum polycystum and Sargassum ilicifolium’s Polysaccharides Extract

Marine algae known as one producers of bioactive compounds. This study aims to analyze the cytotoxicity and antiviral activity in Sargassum polycystum and Sargassum ilicifolium tested with Herpes Simplex Virus (HSV). The polysaccharides extract of algae was used in this study, as sulfated polysaccharides have been reported has bioactivity. Cytotoxicity either antiviral could be correlated with the sulfate content as well as nature and chemical composition of the polysaccharides. Cytotoxicity and antiviral analysis based upon cell viability. Using the Vero cell / HSV-1 model, cytotoxicity was evaluated by incubating cellular suspensions (3.5×105 cells.mL-1) with various dilutions (concentration from 1 to 500 µg.mL-1, four wells per concentration) of fractions in 96-well plates (72h, 37°C, 5% CO2) in Eagle's MEM containing 8% FCS. The cells were examined daily under a phase-contrast microscope to determine the minimum concentration of hydrolysate dry matter that induced alterations in cell morphology, including swelling, shrinkage, granularity and detachment. Algae S. illicifolium was found to have the highest cytotoxic content in each solution compared to S. polycystum. Algae S. illicifolium in KOH 4M (cellulose) reached 2,707 µg.ml-1, then HCl pH 2 (fucoidan) was 2,477 µg.ml-1, then CaCl2 2% (fucoidan) was 2,362 µg.ml-1, and in Na2CO3 3% (alginates) was 2,134 µg.ml-1. For antiviral, S. polycystum contained the highest antiviral compounds compared to S. illicifolium with KOH 4M (cellulose) solution was reached 67.02 µg.ml-1. Then in Na2CO3 3% (alginates) which was 33.25 µg.ml-1, then CaCl2 2% (fucoidan) which was 31.62 µg.ml-1,and HCl pH 2 (fucoidan) was 30.08 µg.ml-1. After all, the highest bioactivity compounds was found with KOH 4M (cellulose) for cytotoxicity in S. ilicifolium and antiviral activity in S. polycystum.
Article Metrics:
- Aquino, R.S., Grativol, C. & Mourão, P,A,S. 2011. Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. Plos One 6:1-7. https://doi.org/10.1371/journal.pone.0018862
- Chayavichitsilp, P., Buckwalter, J.V. & Krakowski. A.C. 2009. Herpes simplex. Pediatr. Rev. 30(4):119-29. https://doi.org/10.1542/pir.30-4-119
- Chen, L. & Huang, G. 2018. The Antiviral Activity of Polysaccharides and Their Derivatives. Int. J. Bio. Mac. 115:77-82. https://doi.org/10.1016/j.ijbiomac.2018.04.056
- Eom, S., Kang, Y., Park, J., Yu, D., Jeong, E., Lee, M. & Kim, Y. 2011. Enhancement of polyphenol content and antioxidant activity of brown alga Eisenia bicyclis extract by microbial fermentation. Fisch. Aquat. 14: 192-197. https://doi.org/10.5657/FAS.2011.0192
- Gebreyohannes, G. 2014. Human Herpes Simplex Virus Categories, Mode of Transmission, Treatment and Precentive Measures. Int. J. Pharm & H. Care Res. 02(04):211-226
- Guo, Q., Qiang, S., Wenping, X., Lei, R., Ryo, S., Fumio, E., Zandong, L. 2017. Immunomodulatory and Anti-IBDV Activities of The Polysaccharide AEX from Coccomyxa gloebotrydiformis. Mar. Drugs. 15(2):36. https://doi.org/10.3390/md15020036
- Hardouin, K., Burlot, A.S., Umami, A., Tanniou, A., Stiger-Pouvreau, V., Widowati, I., Bedoux, G. & Bourgougnon, N. 2013. Bioactive antiviral enzymatic hydrolysates from different invasive French seaweeds. XXIst Int. Seaweed Symp. pp.21-26. https://doi.org/10.1007/s10811-013-0201-6
- Holzinger, A. & Karsten, U. 2013. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological, and molecular mechanisms. Plant. Sci., 4:327. https://doi.org/10.3389/fpls.2013.00327
- Jaulneau, V., Lafitte, C., Jacquet, C., Fournier, S., Salamagne, S., Briand, X., Esquerré-Tugayé, M.T., Dumas, B. 2010 Ulvan, a sulphated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. J. Biomed. Biotechnol., 2010:1-11. https://doi.org/10.1155/2010/525291
- Kelman, D., Posner, E.K., McDermid, K.J., Tabandera, N.K., Wright, P.R., & Wright, A.D. 2012. Antioxidant activity of Hawaiian marine algae. Mar. Drugs., 10: 403-416. https://doi.org/10.3390/md
- Laine J., Kuvaja-Köllner V. & Pietilä E. 2014. Cost-effectiveness of population-level physical activity interventions: a systematic review. Am. J. Health Promot. 29(2):71-80. https://doi.org/10.4278/ajhp.131210-LIT-622
- Mišurcová, L., Orsavová, J. & Vávra Ambrožová, J., 2015 Algal Polysaccharides and Health. Polysaccharid. Bioactiv. Biotechnolog. https://doi.org/10.1007/978-3-319-03751-6_24-1
- Mustafa, M., EM.Illzam, R.K. Muniandy., A.M. Sharifah., M.K.Nang., B. Ramesh. 2016. Herpes simplex virus infections, Pathophysiology and Management. J. Dental Med. Sci., 15:85-91. https://doi.org/10.9790/0853-150738591
- Peréz, M.J., Elena, F., Herminia, D. 2016. Antimicrobial Action of Compounds of Marine Seaweed. Mar. Drugs., 14(3):52. https://doi.org/10.3390/md14030052
- Razonable, R.R. 2011. Antiviral Drugs for Viruses Other Human Immunodeficiency Virus. Mayo. Clin. Proc. 86(10):1009-1026. https://doi.org/10.4065/mcp.2011.0309
- Rodrigues, J.A.G., Quinderé, A.L.G., de-Queiroz. I.N.L., Coura, C.O. & Benevides. N.M.B 2012. Comparative study of sulfated polysaccharides from Caulerpa spp. (Chlorophyceae). Biotechnological tool for species identification. Acta Sci. Biol. Sci., 34(4):381-389. https://doi.org/10.4025/actascibiolsci.v34i4.8976
- Rodriguez-Medina, E.M., Bribian, A., Boyd, A., Palomo, V., Pastor, J., Lagares, A., Gil, C., Martinez, A., Williams, A. & de Caestro, F. 2017. Promoting in vivo remyelination with small molecules: a neuroreparative pharmacological treatment for Multiple Sclerosis. Sci. Rep., 7:43545. https://doi.org/10.1038/srep43545
- Setyawidati, N., Kaimuddin, A.H., Wati, I.P., Helmi, M., Widowati, I., Rossi, N., Liabot, P.O. & Stiger-Pouvreau, V. 2018. Percentage cover, biomass, distribution, and potential habitat mapping of natural macroalgae, based on high-resolution satellite data and in situ monitoring, at Libuk Island, Malasoro Bay, Indonesia. J. Appl. Phycol., 30(1):159-171. https://doi.org/10.1007/s10811-017-1208-1
- Shin, T., Ahn, M., Hyun, J.W., Kim, S.H. & Moon, C. 2014. Antioxidant marine algae phlorotannins and radioprotection: A review of experimental evidence. Acta Histochem. 116:669-674. https://doi.org/10.1016/j.acthis.2014.03.008
- Thirumurugan, G., M.D. Dhanaraju. 2017. Marine Polysaccharides as Multifunctional Pharmaceutical Excipients. Biological Activities and Application of Marine Polysaccharides. p. 129. https://doi.org/10.5772/66191
- Vadlapudi, A.D., Vadlapatla, R.K. & Mitra, A.K. 2013. Update on emerging antivirals for the management of herpes simplex virus infections: a patenting perspective. Recent Pat. Antiinfect. Drug Discov., 8(1).55-67. https://doi.org/10.2174/1574891X11308010011
- Xu, Shu-Ying., Xuesong, H. & Kit-Leong, C. 2017. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure and Activities. Mar. Drugs., 15(12):388. https://doi.org/10.3390/md15120388
Last update: 2021-02-25 10:05:31
Last update: 2021-02-25 10:05:36
License URL: http://creativecommons.org/licenses/by-nc-sa/4.0
Copy this form and after filling it, please send it to ijms@undip.ac.id:
COPYRIGHT TRANSFER STATEMENT
When this article is accepted for publication, its copyright is transferred to ILMU KELAUTAN Indonesian Journal of Marine Sciences, UNDIP. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this article is original and that the author has full power to publish. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. In regard to all kind of plagiarism in this manuscript, if any, only the author(s) will take full responsibility. If the article is based on or part of student’s skripsi, thesis or dissertation, the student needs to sign as his/her agreement that his/her works is going to be published.
Title of article :...........................................................................................................................
Name of Author(s) :...........................................................................................................................
Author’s signature :...........................................................................................................................
Date :...........................................................................................................................