1Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Indonesia
2Indonesian Culture Collection (InaCC), Research Center for Biology, Research Organization for Life Sciences, National Research and Innovation Agency, Indonesia
3Department of Chemistry, Faculty of Sciences, University of Tripoli, Libya
BibTex Citation Data :
@article{IK.IJMS44797, author = {Ervia Yudiati and Alifia Putri and Akbar Harahap and Nuril Azhar and Chrisna Suryono and Danang Prabowo and Rabia Alghazeer}, title = {Light Intensity Promote Pigment Contents, Biomass Production, Total Lipid and Specific Fatty Acid Profile on Nannochloropsis sp. Culture}, journal = {ILMU KELAUTAN: Indonesian Journal of Marine Sciences}, volume = {27}, number = {2}, year = {2022}, keywords = {Fatty acid; Lipid; Nannochloropsis sp.; Pigment content}, abstract = { Nannochloropsis sp is marine microalga and widely cultured for its benefits. Pigments, lipid, and fatty acid compounds of Nannochloropsis sp are essential elements in the industry. This research aimed to determine the best light intensity on the growth rate, cell density and size, biomass, pigments (chlorophyll a, b, carotenoids), total lipid and fatty acid profile. Nannochloropsis sp. culture was carried out with three light intensity treatments (100, 155, and 180 μmol), with two replications. Periodicity was set up (16:8) with the ratio of dark (8h) to light (16h). The highest cell density and total pigment content of 180 μmol were significantly different (p<0.05) with 155 and 100 μmol. The highest weight of chlorophyll a, b, and carotenoids were found from the intensity of 180 treatment (p < 0.05), followed by 155 and 100 μmol as the smallest one. The bigger cell size was reached from 180 and 155 treatments compared to 100 μmol treatment. The higher wet weight was gained from 155 (564 grams) and followed by 180 μmol (549 grams). The 100 μmol light intensity produced the lowest wet weight (490 gr) (p<0.05). The highest total lipid content was obtained from 155 μmol treatment (0.14 g ww). The microalgae contain SFA/Saturated Fatty Acids (Palmitic, Stearic Acid) and UFA/Unsaturated Fatty Acid (Oleic Acid). The microalgae from 180 μmol produced Eicosanoic acid (Omega-6). The production of certain compounds has differed in light intensity. In the future, the light intensity can be adapted as the alternative solution for producing microalgae for industrial approach, whether for pigments or biodiesel production. }, issn = {2406-7598}, pages = {101--110} doi = {10.14710/ik.ijms.27.2.101-110}, url = {https://ejournal.undip.ac.id/index.php/ijms/article/view/44797} }
Refworks Citation Data :
Nannochloropsis sp is marine microalga and widely cultured for its benefits. Pigments, lipid, and fatty acid compounds of Nannochloropsis sp are essential elements in the industry. This research aimed to determine the best light intensity on the growth rate, cell density and size, biomass, pigments (chlorophyll a, b, carotenoids), total lipid and fatty acid profile. Nannochloropsis sp. culture was carried out with three light intensity treatments (100, 155, and 180 μmol), with two replications. Periodicity was set up (16:8) with the ratio of dark (8h) to light (16h). The highest cell density and total pigment content of 180 μmol were significantly different (p<0.05) with 155 and 100 μmol. The highest weight of chlorophyll a, b, and carotenoids were found from the intensity of 180 treatment (p < 0.05), followed by 155 and 100 μmol as the smallest one. The bigger cell size was reached from 180 and 155 treatments compared to 100 μmol treatment. The higher wet weight was gained from 155 (564 grams) and followed by 180 μmol (549 grams). The 100 μmol light intensity produced the lowest wet weight (490 gr) (p<0.05). The highest total lipid content was obtained from 155 μmol treatment (0.14 g ww). The microalgae contain SFA/Saturated Fatty Acids (Palmitic, Stearic Acid) and UFA/Unsaturated Fatty Acid (Oleic Acid). The microalgae from 180 μmol produced Eicosanoic acid (Omega-6). The production of certain compounds has differed in light intensity. In the future, the light intensity can be adapted as the alternative solution for producing microalgae for industrial approach, whether for pigments or biodiesel production.
Article Metrics:
Last update:
Last update: 2024-11-17 08:20:49
Copy this form and after filling it, please send it to ijms@live.undip.ac.id:
COPYRIGHT TRANSFER STATEMENT
When this article is accepted for publication, its copyright is transferred to ILMU KELAUTAN Indonesian Journal of Marine Sciences, UNDIP. The copyright transfer covers the non exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this article is original and that the author has full power to publish. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors. In regard to all kind of plagiarism in this manuscript, if any, only the author(s) will take full responsibility. If the article is based on or part of student’s skripsi, thesis or dissertation, the student needs to sign as his/her agreement that his/her works is going to be published.
Title of article :...........................................................................................................................Name of Author(s) :...........................................................................................................................Author’s signature :...........................................................................................................................Date :...........................................................................................................................
View My Stats
rajajp188
klikjp
https://klik4dx.id/
raffi88
mawar4d
bangbos
mpo1212
scatter hitam
22crown