skip to main content

Multi-Criteria Decision Making (MCDM) Approach for Selecting Solar Plants Site and Technology: A Review

1Faculty of New Sciences and Technologies, Tehran University, A.C., Tehran, Iran, Islamic Republic of

2Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood,, Iran, Islamic Republic of

3Department of Chemical Engineering, University of Diponegoro Jl. Prof. Sudharto, Tembalang, Semarang, 50239, Indonesia, Indonesia

Published: 2 Feb 2019.
Editor(s): H Hadiyanto

Citation Format:
Cover Image
Abstract

Renewable energies have many advantages and their importance is rising owing to gravely mounting concerns for environmental issues and lack of fossil fuels in the future. Solar energy, well acknowledged as an inexhaustible source of energy, is developing dramatically for different purposes such as desalination and electricity generation. Appropriate solar power plant is very important factor for power generation due to its cost and other constraints. The applied technology is as important as the solar power plants location.  In this paper, a wide variety multi criteria decision making (MCDM) methods, investigated by various researchers, are presented to obtain effective criteria in selecting solar plants sites and solar plants technologies. There is not any comprehensive research providing all required criteria for decision making for site and technology selection. Based on the reviewed researches, weight of each criterion depends on many factors such as region, economy, accessibility, power network, maintenance costs, operating costs, etc. The important criteria for site selection are represented and investigated thoroughly in this review paper.

© 2019. CBIORE-IJRED. All rights reserved

Article History: Received June 17th 2017; Received in revised form March 7th 2018; Accepted June 16th 2018; Available online

How to Cite This Article: Ghasempour, R., Nazari, M.A., Ebrahimi, M., Ahmadi, M.H. and Hadiyanto, H. (2019) Multi-Criteria Decision Making (MCDM ) Approach for Selecting Solar Plants Site and Technology: A Review. Int Journal of Renewable Energy Development, 8(1), 15-25.

https://doi.org/10.14710/ijred.8.1.15-25

Fulltext View|Download
Keywords: Solar Energy;PV; MCDM;Renewable Energy

Article Metrics:

  1. Ahammed, F. and Abdullahil, A. (2013). Selection of the most appropriate package of Solar Home System using Analytic Hierarchy Process model in rural areas of Bangladesh. Renewable Energy 55, 6–11
  2. Ahmad, S. and Razman, M.T. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable Energy 63, 458–466
  3. Amer, M. and Tugrul, U.D. (2011). Selection of renewable energy technologies for a developing county: A case of Pakistan. Energy for Sustainable Development 15, 420-435
  4. Andresen, I. (2000). A multi-criteria decision-making method for solar building design
  5. Arab, M., Soltanieh, M. and Shafii, M.B. (2012). Experimental investigation of extra-long pulsating heat pipe application in solar water heaters. Experimental Thermal and Fluid Science 42, 6–15
  6. Aragonés-Beltrán, P., Chaparro-González, F., Pastor-Ferrando, J.P. and Pla-Rubio,A. (2014). An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects. Energy 66, 222–238
  7. Asakereh, A., Omid, M., Alimardani, R and Sarmadian, F. (2014). Developing a GIS-based Fuzzy AHP Model for Selecting Solar Energy Sites in Shodirwan Region in Iran. International Journal of Advanced Science and Technology 68, 37-48
  8. Baniasad A, I., Sadegh, M.O and Ameri, M. (2015). Energy management and economics of a trigeneration system Considering the effect of solar PV, solar collector and fuel price. Energy for Sustainable Development 26: 43-55
  9. Cavallaro, F. (2009). Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy 34 (7), 1678–1685
  10. Cavallaro, F. (2010). Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy 87 (2), 496–503
  11. Chandrasekhar, V, Marthuvanan, M., Ramkumar,M.M., Shriram,R. Manickavasagam,V.M. and Ramnath, B.V. (2013). MCDM approach for selecting suitable solar tracking system. 7th International Conference on Intelligent Systems and Control (ISCO)
  12. Chatzimouratidis, A.I. and Petros A. Pilavachi, P.A. (2008). Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy 36 (3), 1074–1089
  13. Chatzimouratidis, A. I., and Pilavachi P.A. (2009). Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Energy Policy 37 (3), 778–787
  14. Chen, C-R, Huang,C.C and Tsuei, H.J (2014). A Hybrid MCDM Model for Improving GIS-Based Solar Farms Site Selection. International Journal of Photoenergy
  15. Dellosa, JT. (2016). Potential Effect and Analysis of High Residential Solar Photovoltaic (PV) Systems Penetration to an Electric Distribution Utility (DU). Int. Journal of Renewable Energy Development 179-185
  16. García-Cascales, M., Socorro, Lamata, M.T. and Sánchez-Lozano, M.J. (2012). Evaluation of photovoltaic cells in a multi-criteria decision-making process. Annals of Operations Research 199 (1), 373–391
  17. Gupta, N. (2011). Material selection for thin-film solar cells using multiple attribute decision making approach. Materials & Design 32 (3), 1667–1671
  18. Hoque, N., Roy, A., Beg, M.R.A. and Das.B.K. (2016). Techno-Economic Evaluation of Solar Irrigation Plants Installed in Bangladesh. Int. Journal of Renewable Energy Development 73-78
  19. Jahangiri, M S., Gholami, D., Ghiasi, M., Shafii, MB and Shiee.Z. (2014). Experimental investigation of the effect of using thermosyphon heat pipes and vacuum glass on the performance of solar sti. Energy 75, 501–507
  20. Kaa, G, Rezaei, J., Kamp, L and de Winter, A. (2014.) Photovoltaic technology selection: A fuzzy MCDM approach. Renewable and Sustainable Energy Reviews 32, 662–670
  21. Kabak, M and Dağdeviren, M (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management 79, 25–33
  22. Kahraman, C., İ Kaya,I and Cebi.S. (2009). A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy 34 (10), 1603–1616
  23. Kengpol, A., Rontlaong, P. and Tuominen.M. (2013). A Decision Support System for Selection of Solar Power Plant Locations by Applying Fuzzy AHP and TOPSIS: An Empirical Study. Jouranl of Software Engineering and Application 6 (9)
  24. Kumar, R., and Singal. S.K. (2015). Selection of Best Operating Site of SHP Plant based on Performance. Procedia - Social and Behavioral Sciences 189,110-116
  25. Luthra, S., Govindan, K., Ravinder K. K, and Mangla, S.K. (2016). Evaluating the enablers in solar power developments in the current scenario using fuzzy DEMATEL: An Indian perspective. Renewable and Sustainable Energy Reviews 63,379–397
  26. Miguel Sánchez-Lozano, J., Socorro García-Cascales, M. and Teresa Lamata. M. (2013). Decision Criteria for Optimal Location of Solar Plants: Photovoltaic and Thermoelectric. Assessment and Simulation Tools for Sustainable Energy Systems 129,79-91
  27. Mohsen, Mousa S., and Bilal A. Akash. 1997. "Evaluation of domestic solar water heating system in Jordan using analytic hierarchy process." Energy Conversion and Management 38 (18): 1815–1822
  28. Naick, B.K., Chatterjee,T.K. and Chatterjee, K (2017). Performance Analysis of Maximum Power Point Tracking Algorithms Under Varying Irradiation. Int. Journal of Renewable Energy Development 65-74
  29. Narei, H., Ghasempour, R. and Noorollahi.Y. (2016). The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Conversion and Management 123, 581–591
  30. Narei, H., Ghasempour,R. and Noorollahi, Y (2016). The effect of employing nanofluid on reducing the bore length of a vertical ground-source heat pump. Energy Conversion and Management 123, 581–591
  31. Nigim, K., Munier, N.and Green. J. (2004). Pre-feasibility MCDM tools to aid communities in prioritizing local viable renewable energy sources. Renewable Energy 29 (11): 1775–1791
  32. Nixon, J.D., Dey, P.K. and Davies. P.A. (2010). Which is the best solar thermal collection technology for electricity generation in north-west India? Evaluation of options using the analytical hierarchy process. Energy 35 (12),5230–5240
  33. Nixon, J.D., Dey, P.K. and Davies. P.A. (2013). Design of a novel solar thermal collector using a multi-criteria decision-making methodology. Journal of Cleaner Production 59: 150–159
  34. Noorollahi, Y., Ghasempour, R. and Jalilinasrabady, S. (2015). A GIS Based Integration Method for Geothermal Resources Exploration and Site Selection. Energy Exploration & Exploitation 33 (2): 243-257
  35. Olimat, A.N. (2017). Study of Fabricated Solar Dryer of Tomato Slices Under Jordan Climate Condition. Int. Journal of Renewable Energy Development 93-101
  36. Pohekar, S.D., and Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews 8 (4), 365–381
  37. Sánchez-Lozano, J.M., García-Cascales, M.S. and Lamata M.T. (2015). Evaluation of suitable locations for the installation of solar thermoelectric power plant. Computers & Industrial Engineering 87, 343–355
  38. Şengül, Ü., Miraç,E., Shiraz, S.E., Gezder, V. and Şengül, A.B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy 75, 617–625
  39. Shiue, Y.-C. and Lin. C-Y. (2012). Applying analytic network process to evaluate the optimal recycling strategy in upstream of solar energy industry. Energy and Buildings 54, 266–277
  40. Singh, A., Vats, G and Khanduja. D. (2016). Exploring tapping potential of solar energy: Prioritization of Indian states. Renewable and Sustainable Energy Reviews 58, 397–406
  41. Tang, Y., Sun, H., Yao, Q. and Wang. Y. (2014). The selection of key technologies by the silicon photovoltaic industry based on the Delphi method and AHP (analytic hierarchy process): Case study of China. Energy 75, 474–482
  42. Tarwidi, D., Murdiansyah, D.T. and Ginanjar.N (2016). Performance Evaluation of Various Phase Change Materials for Thermal Energy Storage of A Solar Cooker via Numerical Simulation. Int. Journal of Renewable Energy Development 199-210
  43. Toghi E., Amin, R. G., Fatemeh, R. and Fatollah, P. (2015). Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency. Energy, Exploration & Exploitation 33 (5)
  44. Uyan, M. (2013). GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews 28, 11–17
  45. Vafaeipour, M., Sarfaraz, H. Z., Varzandeh, M.H.M, Derakhti, A. and Eshkalag,M.K. (2014). Assessment of regions priority for implementation of solar projects in Iran: New application of a hybrid multi-criteria decision-making approach. Energy Conversion and Management 86, 653–663
  46. Watson, J. and Malcolm D. H. (2015). Regional Scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape and Urban Planning 138, 20–31
  47. Zeyuan, Y. (2013). Selection of Solar Cell based on TOPSIS Method. International Conference on Advanced Information Engineering and Education Science (ICAIEES 2013)
  48. Zoghi, M., Amir, H.E., Mahdis, S., Amiri,,M.J and Sepideh, K (2015). Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN. Renewable and Sustainable Energy Reviews

Last update:

  1. Optimal Location to Use Solar Energy in an Urban Situation

    Ngakan Ketut Acwin Dwijendra, Indrajit Patra, N. Bharath Kumar, Iskandar Muda, Elsayed M. Tag El Din. Computers, Materials & Continua, 75 (1), 2023. doi: 10.32604/cmc.2023.034297
  2. Integrated Decision-Making Approach Based on SWARA and GRA Methods for the Prioritization of Failures in Solar Panel Systems under Z-Information

    Saeid Jafarzadeh Ghoushchi, Mohd Nizam Ab Rahman, Diba Raeisi, Elnaz Osgooei, Majid Jafarzadeh Ghoushji. Symmetry, 12 (2), 2020. doi: 10.3390/sym12020310
  3. A pathway to 25% reduction in greenhouse gas emission by 2030 using GIS-Based multi-criteria decision making for renewables, date palm (phoenix dactylifera), and carbon credits: a case for Qatar

    Hazrat Bilal, Eric C. Okonkwo, Tareq Al-Ansari. Frontiers in Energy Research, 12 , 2024. doi: 10.3389/fenrg.2024.1272993
  4. Assessment of supply chain segmentation from an interoperability perspective

    Laion Xavier Pereira, Eduardo de Freitas Rocha Loures, Eduardo Alves Portela Santos. International Journal of Logistics Research and Applications, 25 (1), 2022. doi: 10.1080/13675567.2020.1795821
  5. Using a Multi-Criteria Model to Assess the Suitability of Potential Sites to Implement Off-Grid Solar PV Projects in South America

    Laura M. Hinestroza-Olascuaga, Pedro M. S. Carvalho, Célia M. S. Cardoso de Jesus. Sustainability, 13 (14), 2021. doi: 10.3390/su13147546
  6. Degradation, Mitigation, and Forecasting Approaches in Thin Film Photovoltaics

    Dipankar Deb, Kshitij Bhargava. 2022. doi: 10.1016/B978-0-12-823483-9.00019-X
  7. Methods of Multi-Criteria Analysis in Technology Selection and Technology Assessment: A Systematic Literature Review

    Justyna Kozłowska. Engineering Management in Production and Services, 14 (2), 2022. doi: 10.2478/emj-2022-0021
  8. A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study

    Mohamed Abdel-Basset, Abduallah Gamal, Ripon K. Chakrabortty, Michael Ryan. Journal of Cleaner Production, 280 , 2021. doi: 10.1016/j.jclepro.2020.124462
  9. Optimization of Advanced Metering Infrastructure (AMI) Customer Ecosystem by Using Analytic Hierarchy Process Method

    Soleh Ashari, Eko Adhi Setiawan. 2022 10th International Conference on Smart Grid (icSmartGrid), 2022. doi: 10.1109/icSmartGrid55722.2022.9848639
  10. Technological assessment and modeling of energy‐related CO 2 emissions for the G8 countries by using hybrid IWO algorithm based on SVM

    Mahyar Ghazvini, Mohammad Dehghani Madvar, Mohammad Hossein Ahmadi, Mohammad Hossein Rezaei, Mamdouh El Haj Assad, Narjes Nabipour, Ravinder Kumar. Energy Science & Engineering, 8 (4), 2020. doi: 10.1002/ese3.593
  11. A total distance ranking approach to fuzzy AHP-based MCDM method for selecting sustainable manufacturing facility location

    Thi Bich Ha Nghiem, Ta-Chung Chu. Journal of Intelligent & Fuzzy Systems, 46 (2), 2024. doi: 10.3233/JIFS-223962
  12. Implementation of energy sustainability using hybrid power systems, a case study

    Armin Razmjoo, M.A. Ehyaei, Abdollah Ahmadi, Mehdi Pazhoohesh, Mousa Marzband, Mohsen Mansouri Khosravi, Ahmad Shahhoseini, Afshin Davarpanah. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019. doi: 10.1080/15567036.2019.1687623
  13. Hybrid Multi-Criteria Decision Making approach for the evaluation of sustainable photovoltaic farms locations

    Mohamed Abdel-Basset, Abduallah Gamal, Osama M. ELkomy. Journal of Cleaner Production, 328 , 2021. doi: 10.1016/j.jclepro.2021.129526
  14. Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan

    Hoa Ao Xuan, Vuong Vu Trinh, Kuaanan Techato, Khamphe Phoungthong. Sustainable Energy Technologies and Assessments, 52 , 2022. doi: 10.1016/j.seta.2022.101979
  15. Multi-Criteria Decision-Making for Renewable Hydrogen Production Site Selection: a Systematic Literature Review

    S. Serna, T. Gerres, R. Cossent. Current Sustainable/Renewable Energy Reports, 10 (3), 2023. doi: 10.1007/s40518-023-00219-0
  16. Analyzing policy interventions to stimulate suitable energy sources for the most polluted states of India

    Rachna, Amit Kumar Singh. Renewable and Sustainable Energy Reviews, 197 , 2024. doi: 10.1016/j.rser.2024.114397
  17. Optimization of PV/T Solar Water Collector based on Fuzzy Logic Control

    Omer K Ahmed, Raid W Daoud, Shaimaa M Bawa, Ahmed H Ahmed. International Journal of Renewable Energy Development, 9 (2), 2020. doi: 10.14710/ijred.9.2.303-310
  18. Risk Evaluation of Electric Power Grid Enterprise Related to Electricity Transmission and Distribution Tariff Regulation Employing a Hybrid MCDM Model

    Wenjin Li, Bingkang Li, Rengcun Fang, Peipei You, Yuxin Zou, Zhao Xu, Sen Guo. Mathematics, 9 (9), 2021. doi: 10.3390/math9090989
  19. Deploying a GIS-Based Multi-Criteria Evaluation (MCE) Decision Rule for Site Selection of Desalination Plants

    Mehdi Gholamalifard, Bonyad Ahmadi, Ali Saber, Sohrab Mazloomi, Tiit Kutser. Water, 14 (10), 2022. doi: 10.3390/w14101669
  20. Innovation in Urban and Regional Planning

    Shiva Rahmani, Rossella Scorzelli, Federica Ragone, Grazia Fattoruso, Beniamino Murgante. Lecture Notes in Civil Engineering, 463 , 2024. doi: 10.1007/978-3-031-54096-7_34
  21. GIS based multi-criteria decision making for solar hydrogen production sites selection in Algeria

    Djilali Messaoudi, Noureddine Settou, Belkhir Negrou, Belkhir Settou. International Journal of Hydrogen Energy, 44 (60), 2019. doi: 10.1016/j.ijhydene.2019.10.099
  22. Geographical Information System (GIS)-Based Solar Photovoltaic Farm Site Suitability Using Multi-criteria Approach (MCA) in Southern Tamilnadu, India

    Vivek Vasudevan, Edison Gundabattini, S. Darius Gnanaraj. Journal of The Institution of Engineers (India): Series C, 105 (1), 2024. doi: 10.1007/s40032-023-01001-3
  23. Multi-criteria approach to selecting sites for solar-diesel hybrid systems

    V. A. Tremyasov, O. A. Grigorieva, K. V. Kenden. iPolytech Journal, 25 (5), 2021. doi: 10.21285/1814-3520-2021-5-601-610
  24. Technological assessment and modeling of energy‐related CO2 emissions for the G8 countries by using hybrid IWO algorithm based on SVM

    Mahyar Ghazvini, Mohammad Dehghani Madvar, Mohammad Hossein Ahmadi, Mohammad Hossein Rezaei, Mamdouh El Haj Assad, Narjes Nabipour, Ravinder Kumar. Energy Science & Engineering, 8 (4), 2020. doi: 10.1002/ese3.593
  25. Computational Science and Its Applications – ICCSA 2023 Workshops

    Rossella Scorzelli, Shiva Rahmani, Annamaria Telesca, Grazia Fattoruso, Beniamino Murgante. Lecture Notes in Computer Science, 14107 , 2023. doi: 10.1007/978-3-031-37114-1_33
  26. Implementing MCDM Techniques for Ranking Renewable Energy Projects under Fuzzy Environment: A Case Study

    Mohsen Ramezanzade, Hossein Karimi, Khalid Almutairi, Hoa Ao Xuan, Javad Saebi, Ali Mostafaeipour, Kuaanan Techato. Sustainability, 13 (22), 2021. doi: 10.3390/su132212858
  27. A Spatial Multicriteria Analysis for a Regional Assessment of Eligible Areas for Sustainable Agrivoltaic Systems in Italy

    Grazia Fattoruso, Domenico Toscano, Andrea Venturo, Alessandra Scognamiglio, Massimiliano Fabricino, Girolamo Di Francia. Sustainability, 16 (2), 2024. doi: 10.3390/su16020911
  28. Using an Analytical Hierarchy Process to Analyze the Development of the Green Energy Industry

    Wen-Hsiang Chiu, Wen-Cheng Lin, Chun-Nan Chen, Nien-Ping Chen. Energies, 14 (15), 2021. doi: 10.3390/en14154452
  29. Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru

    R. Rios, S. Duarte. Renewable and Sustainable Energy Reviews, 149 , 2021. doi: 10.1016/j.rser.2021.111310
  30. Multi-criteria decision making for different concentrated solar thermal power technologies

    Hegazy Rezk, Irik Z. Mukhametzyanov, Mohammad Ali Abdelkareem, Tareq Salameh, Enas Taha Sayed, Hussein M. Maghrabie, Ali Radwan, Tabbi Wilberforce, Khaled Elsaid, A.G. Olabi. Sustainable Energy Technologies and Assessments, 52 , 2022. doi: 10.1016/j.seta.2022.102118
  31. A review on the applications of multi-criteria decision-making approaches for power plant site selection

    Amir Khanlari, Mohammad Alhuyi Nazari. Journal of Thermal Analysis and Calorimetry, 147 (7), 2022. doi: 10.1007/s10973-021-10877-1
  32. Rural electrification planning using Geographic Information System (GIS)

    Biniyam Zemene Taye, Tewodros Gera Workineh, Abraham Hizikiel Nebey, Habtemariam Aberie Kefale, Wei Meng. Cogent Engineering, 7 (1), 2020. doi: 10.1080/23311916.2020.1836730
  33. A Hybrid Multi-Criteria-Decision-Making Aggregation Method and Geographic Information System for Selecting Optimal Solar Power Plants in Iran

    Jalil Heidary Dahooie, Ali Husseinzadeh Kashan, Zahra Shoaei Naeini, Amir Salar Vanaki, Edmundas Kazimieras Zavadskas, Zenonas Turskis. Energies, 15 (8), 2022. doi: 10.3390/en15082801
  34. An eco-friendly evaluation for locating wheat processing plants: an integrated approach based on interval type-2 fuzzy AHP and COPRAS

    Cihan Çetinkaya, Barış Özkan, Eren Özceylan, Samer Haffar. Soft Computing, 26 (9), 2022. doi: 10.1007/s00500-022-06922-2
  35. Research on Engineering Decision Making Method Based on Fuzzy Intuitionistic Uncertain Linguistic Information

    婷婷 何. Operations Research and Fuzziology, 11 (03), 2021. doi: 10.12677/ORF.2021.113035
  36. A Model for Optimizing Location Selection for Biomass Energy Power Plants

    Chia-Nan Wang, Tsang-Ta Tsai, Ying-Fang Huang. Processes, 7 (6), 2019. doi: 10.3390/pr7060353
  37. A hybrid GIS-MCDM approach for multi-level risk assessment and corresponding effective criteria in optimal solar power plant

    Marzieh Mokarram, Tam Minh Pham, Mohammad Hassan Khooban. Environmental Science and Pollution Research, 29 (56), 2022. doi: 10.1007/s11356-022-21734-5
  38. A novel hybrid grey-fuzzy optimization model for assessment of solar technologies considering different scenarios of the Indian market

    Shweta Singh, Rathul Raj, Atul Dhar, Nikhil Khot, Satvasheel Powar. Energy Reports, 11 , 2024. doi: 10.1016/j.egyr.2024.01.059
  39. Geolocation of photovoltaic farms using Geographic Information Systems (GIS) with Multiple-criteria decision-making (MCDM) methods: Case of the Ecuadorian energy regulation

    Geovanna Villacreses, Javier Martínez-Gómez, Diego Jijón, Martin Cordovez. Energy Reports, 8 , 2022. doi: 10.1016/j.egyr.2022.02.152
  40. A Model for Selecting a Biomass Furnace Supplier Based on Qualitative and Quantitative Factors

    Chia-Nan Wang, Hsin-Pin Fu, Hsien-Pin Hsu, Van Thanh Nguyen, Viet Tinh Nguyen, Ansari Saleh Ahmar. Computers, Materials & Continua, 69 (2), 2021. doi: 10.32604/cmc.2021.016284
  41. A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran

    Devika Kannan, Sahar Moazzeni, Sobhan mostafayi Darmian, Ahmadreza Afrasiabi. Journal of Cleaner Production, 279 , 2021. doi: 10.1016/j.jclepro.2020.122368
  42. Putting into practice a decision-making framework for a thorough performance and location evaluation of solar photovoltaic plants in India from distinctive climate zones

    Shweta Singh, Satvasheel Powar. Energy Strategy Reviews, 50 , 2023. doi: 10.1016/j.esr.2023.101202
  43. Status of direct and indirect solar desalination methods: comprehensive review

    S. Mohsen Pourkiaei, Mohammad Hossein Ahmadi, Mahyar Ghazvini, Soroush Moosavi, Fathollah Pourfayaz, Ravinder Kumar, Lingen Chen. The European Physical Journal Plus, 136 (5), 2021. doi: 10.1140/epjp/s13360-021-01560-3
  44. Emergy-based exergoeconomic and exergoenvironmental evaluation of a combined power and cooling system based on ORC-VCR

    Alireza Mahmoudan, Parviz Samadof, Ravinder Kumar, Mohamad Jalili, Alibek Issakhov. Journal of Thermal Analysis and Calorimetry, 145 (3), 2021. doi: 10.1007/s10973-020-10422-6
  45. A Novel Extension of the Technique for Order Preference by Similarity to Ideal Solution Method with Objective Criteria Weights for Group Decision Making with Interval Numbers

    Dariusz Kacprzak. Entropy, 23 (11), 2021. doi: 10.3390/e23111460

Last update: 2024-04-19 19:29:40

  1. Integrated Decision-Making Approach Based on SWARA and GRA Methods for the Prioritization of Failures in Solar Panel Systems under Z-Information

    Saeid Jafarzadeh Ghoushchi, Mohd Nizam Ab Rahman, Diba Raeisi, Elnaz Osgooei, Majid Jafarzadeh Ghoushji. Symmetry, 12 (2), 2020. doi: 10.3390/sym12020310
  2. Technological assessment and modeling of energy-related CO2 emissions for the G8 countries by using hybrid IWO algorithm based on SVM

    Ghazvini M.. Energy Science and Engineering, 8 (4), 2020. doi: 10.1002/ese3.593
  3. Solar power - A clean energy source that contributes to energy balance in Vietnam: A mini-review

    Dong V.H.. Journal of Mechanical Engineering Research and Developments, 42 (5), 2019. doi: 10.26480/jmerd.05.2019.177.181
  4. A new hybrid multi-criteria decision-making approach for location selection of sustainable offshore wind energy stations: A case study

    Mohamed Abdel-Basset, Abduallah Gamal, Ripon K. Chakrabortty, Michael Ryan. Journal of Cleaner Production, 280 , 2021. doi: 10.1016/j.jclepro.2020.124462
  5. Potential assessment of solar energy for electricity development in Vietnam: Prospects, scenarios and proposals

    Dong V.H.. Journal of Mechanical Engineering Research and Developments, 43 (3), 2020.
  6. Implementation of energy sustainability using hybrid power systems, a case study

    Armin Razmjoo, M.A. Ehyaei, Abdollah Ahmadi, Mehdi Pazhoohesh, Mousa Marzband, Mohsen Mansouri Khosravi, Ahmad Shahhoseini, Afshin Davarpanah. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019. doi: 10.1080/15567036.2019.1687623
  7. Optimization of PV/T Solar Water Collector based on Fuzzy Logic Control

    Omer K Ahmed, Raid W Daoud, Shaimaa M Bawa, Ahmed H Ahmed. International Journal of Renewable Energy Development, 9 (2), 2020. doi: 10.14710/ijred.9.2.303-310
  8. Evaluating the materials used for hydrogen production based on photoelectrochemical technology

    Mohammdreza Nazemzadegan, Roghayeh Ghasempour. International Journal of Renewable Energy Development, 8 (2), 2019. doi: 10.14710/ijred.8.2.169-178
  9. GIS based multi-criteria decision making for solar hydrogen production sites selection in Algeria

    Djilali Messaoudi, Noureddine Settou, Belkhir Negrou, Belkhir Settou. International Journal of Hydrogen Energy, 44 (60), 2019. doi: 10.1016/j.ijhydene.2019.10.099
  10. Rural electrification planning using Geographic Information System (GIS)

    Biniyam Zemene Taye, Tewodros Gera Workineh, Abraham Hizikiel Nebey, Habtemariam Aberie Kefale, Wei Meng. Cogent Engineering, 7 (1), 2020. doi: 10.1080/23311916.2020.1836730
  11. Alternative energy sources and their analysis as investment opportunities: A case of the Czech Republic

    Seknickova J.. International Journal of Supply and Operations Management, 7 (2), 2020. doi: 10.22034/IJSOM.2020.2.7
  12. A Model for Optimizing Location Selection for Biomass Energy Power Plants

    Chia-Nan Wang, Tsang-Ta Tsai, Ying-Fang Huang. Processes, 7 (6), 2019. doi: 10.3390/pr7060353
  13. A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran

    Devika Kannan, Sahar Moazzeni, Sobhan mostafayi Darmian, Ahmadreza Afrasiabi. Journal of Cleaner Production, 279 , 2021. doi: 10.1016/j.jclepro.2020.122368
  14. Emergy-based exergoeconomic and exergoenvironmental evaluation of a combined power and cooling system based on ORC-VCR

    Alireza Mahmoudan, Parviz Samadof, Ravinder Kumar, Mohamad Jalili, Alibek Issakhov. Journal of Thermal Analysis and Calorimetry, 145 (3), 2021. doi: 10.1007/s10973-020-10422-6