skip to main content

Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation

1Branch of Material Science and Engineering, Institute of Natural Sciences, Kastamonu University, Turkey

2Department of Electrical and Electronic Engineering, Faculty of Technology, Gazi University,, Turkey

Published: 2 Feb 2019.
Editor(s): H Hadiyanto

Citation Format:
Cover Image
Abstract

The sun tracking system that lets Parabolic Dish or PV panel orthogonal to the sun radiation during the day, can raise the concentrated sun radiation by up to 40%. The fixed Parabolic Dish cannot generally track the sun trajectory, also the single-axis tracking system can follow the sun in the horizontal direction (azimuth angle), while the two-axis tracker tracks the sun path in both azimuth and altitude angles. Dual axis automated control tracking system, which tracks the sun in two planes (azimuth and altitude) to move a Concentrated Parabolic Dish system to the direction of ray diffusion of sun radiation is studied and designed. The designed tracking system constructed of microcontroller or programmable logic control (PLC) with a digital program that operates sun tracker using driver, gear box to control the angular speed and mechanical torque, supports and mountings. Two steeper motors are modelled to guide the parabolic dish panel perpendicular to the sun's beam. In the present study, simulation scheme of two axis sun tracking system has been developed by operating under Matlab/Simulink. The program models and studies the effectiveness of overall system. The designed tracker has been studied with real data of sun trajectory angles (azimuth and altitude) as well as a Direct Normal Irradiation (DNI) to improve the effectiveness of parabolic dish panel by adding the tracking features to those systems according to the present site.

©2019. CBIORE-IJRED. All rights reserved

Article History: Received May 18th 2018; Received in revised form October 8th 2018; Accepted January 6th 2019; Available online

How to Cite This Article: Shufat, S.A., Kurt, E, and Hancerlioğulları, A. (2019) Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation. Int. Journal of Renewable Energy Development, 8(1), 7-13.

https://doi.org/10.14710/ijred.8.1.7-13

Fulltext View|Download
Keywords: Azimuth;Altitude; Irradiation; sun tracking system; PDS

Article Metrics:

  1. Akizu, O., Bueno, O., Barcena, I., Kurt, E., Topaloglu, N. & Lopez – Guede, J.M. (2018) Contributions of Bottom-Up Energy Transitions in Germany: A Case Study Analysis, Energies, 11, 849, doi: 10.3390/en11040849
  2. Algifri A, & Al-Towaie H, (2001) Efficient orientation impacts of box-type solar cooker on the cooker performance. Solar Energ. 70, 165-170
  3. Appleyard D, (2009) Solar trackers: Facing the sun, Renewable Energy World, vol. 12, no. 3, pp. 41–53
  4. Astronomical applications department http://aa.usno.navy.mil/ data/ docs/AltAz.php
  5. Badescu V, (1998) Different strategies for maximum solar radiation collection on Mars surface. Acta Astronaut. 43, 409-421
  6. Bari S, (2000) Optimum slope angle and orientation of solar collectors for different periods of possible utilization. Energy Convers. Manage. 41, 855-860
  7. Bouzelata, Y., Altin, N., Chenni, R. & Kurt, E. (2016) Exploration of optimal design and performance of a hybrid wind-solar energy system, Int. J. Hydrogen Energy, 41, 12497-12511, doi.org/10.1016/j.ijhydene.2015.12.165
  8. chuck-wright consulting http://Chuck-Wright .com /projects/PV- measures .html
  9. Chi a, Yen L, Po-Cheng C, Che-Ming C, & Chiu-Feng L, (2009) Sun tracking systems: A Review, Sensor, 9(05), 3875-3890; doi: 10.3390/s90503875
  10. Chong K, Wong C, Tunku U, & Rahman A, (2014) General Formula for On-Axis Sun-Tracking System. Universiti Tunku Abdul Rahman Malaysia, Chapter 3, pp. 263–291
  11. Hj Mohd, Yakup M, & Malik, A.Q. (2001) Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew. Energ. 24, 223-234
  12. Kowalski S, (1997) Solar powered light fixture. Renew. Energ. 11, 399
  13. Kurt, E., Gor, H. & Doner, U. (2016) Electromagnetic design of a new axial and radial flux generator with the rotor back-irons, 41(17), 7019-7026, 10.1016/j.ijhydene.2016.02.034
  14. McCluney, R. (1983) Passive optical solar tracking system. Appl. Optics, 22, 3433-3439
  15. Oo L. L., & N. K. Hlaing, (2010) Microcontroller-based two-axis solar tracking system, in Computer Research and Development, 2010, Second International Conference on, pp. 436–440, IEEE, 2010
  16. Photovoltaic geographical information system M http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html #HR
  17. Ponniran A., Hashim A., & Joret A., (2011) A design of low power single axis solar tracking system regardless of motor speed, International Journal of Integrated Engineering, vol. 3, no. 2
  18. Popat P, & Arlington V. (1998) Autonomous, low-cost, automatic window covering system for daylighting applications. Renew. Energ. 13, 146
  19. Prinsloo. G. J, & Dobson. R. T, (2015) Solar Tracking. Solar Books 1-542, doi: 10.13140/RG.2.1.4265.6329/1
  20. Raasakka B, (1997) Solar skylight apparatus. Renew. Energ. 12, 117
  21. Rustom M, Nijmeh S, & Abdallah S, (2006) A Programmable Logic Controller to control Two Axis Sun Tracking system, Information Technology Journal, Vol. 5, pp. 1083 - 1087
  22. Sarker M, Pervez M, Beg A, (2010) Design, Fabrication and Experimental Study of a Novel Two-Axis Sun Tracker, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS Vol: 10 No: 01
  23. Sidek M, Hasan W, Kadir M, Shafie S, Radzi M, Ahmad S, & Marhaban M, (2014) GPS Based Portable Dual - Axis Solar Tracking System Using Astronomical Equation, IEEE International Conference Power & Energy (PECON)
  24. Wen J, & Smith T, (2002) Absorption of solar energy in a room. Solar Energy, 72, 283-297
  25. William B, & Michael G, (2001) Power from the sun, January, http://www.powerfromthesun.net/book.html

Last update:

  1. Monitoring Floating Solar Tracker Based on Axis Coordinates using LoRa Network

    Abyan Arief Fernandez, Andrian Rakhmatsyah, Aulia Arif Wardana. International Journal of Renewable Energy Development, 9 (2), 2020. doi: 10.14710/ijred.9.2.141-149
  2. A novel technique of schedule tracker for parabolic dish concentrator

    Rajkumar Malviya, Akash Patel, Ayush Singh, Santosh Jagadev, Prashant Baredar, Anil Kumar. Environmental Science and Pollution Research, 30 (32), 2023. doi: 10.1007/s11356-023-27934-x
  3. A Review of Time-Based Solar Photovoltaic Tracking Systems

    Abdulwaheed Musa, Emmanuel Alozie, Suleiman A. Suleiman, John Adedapo Ojo, Agbotiname Lucky Imoize. Information, 14 (4), 2023. doi: 10.3390/info14040211
  4. Performance of the Hybrid Photovoltaic-Thermoelectric Generator (PV-TEG) System under Malaysian Weather Conditions

    Umar Abubakar Saleh, Siti. Amely. Jumaat, Muhammad Akmal Johar, Wan AkashaWan Jamaluddin. 2021 IEEE Conference on Energy Conversion (CENCON), 2021. doi: 10.1109/CENCON51869.2021.9627257
  5. MATLAB/Simulink Based Instantaneous Solar Radiation Modeling, Validation and Performance Analysis of Fixed and Tracking Surfaces for the Climatic Conditions of Lahore City, Pakistan

    Naseer Ahmad. International Journal of Renewable Energy Development, 11 (3), 2022. doi: 10.14710/ijred.2022.38748
  6. Techno-economic analysis of fixed versus sun-tracking solar panels

    Akram Elahi Gol, Milan Ščasný. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.50165
  7. A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology

    Zihan Yang, Zhiquan Xiao. Energies, 16 (23), 2023. doi: 10.3390/en16237768
  8. Solar powered water pump with single axis tracking system for irrigation purpose

    Pavushetti Abhilash, Raghavan Nanda Kumar, Raparthi Praveen Kumar. Materials Today: Proceedings, 39 , 2021. doi: 10.1016/j.matpr.2020.08.336
  9. A review on solar energy intensified biomass valorization and value-added products production: Practicability, challenges, techno economic and lifecycle assessment

    S. Naveen, Suresh Aravind, Balaji Yamini, Ramasrinivasan Vasudhareni, Kannappan Panchamoorthy Gopinath, Jayaseelan Arun, Arivalagan Pugazhendhi. Journal of Cleaner Production, 405 , 2023. doi: 10.1016/j.jclepro.2023.137028
  10. Design, modeling and solar tracking control for a novel parabolic dish solar concentrator

    Han Mo, Fanmao Liu, Cancan Liao, Yuanyuan Zhang. Robotica, 41 (10), 2023. doi: 10.1017/S0263574723000814
  11. Experimental evaluation for enhancement of small-scale concentrated solar power ‎systems – a case study ‎for solar cooking

    Ismael A.S. Ehtiwesh. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45 (4), 2023. doi: 10.1080/15567036.2023.2262432
  12. Developing Smart Self Orienting Solar Tracker for Mobile PV Power Generation Systems

    Yousif R. Al-Saadi, Monaf S. Tapou, Areej A. Badi, Shahab Abdulla, Mohammed Diykh. IEEE Access, 10 , 2022. doi: 10.1109/ACCESS.2022.3194026
  13. OPTIMASI OUTPUT DUAL AXIS SOLAR TRACKER MENGGUNAKAN METODE ASTRONOMI BERBASIS SMART RELAY

    Budi Triyono, Yuli Prasetyo, Hendrik Kusbandono. Transmisi, 23 (1), 2021. doi: 10.14710/transmisi.23.1.1-4
  14. A study on traction control system for solar panel on vessels

    Xuan Phuong Nguyen, Van Huong Dong. INTERNATIONAL CONFERENCE ON EMERGING APPLICATIONS IN MATERIAL SCIENCE AND TECHNOLOGY: ICEAMST 2020, 2235 , 2020. doi: 10.1063/5.0007708

Last update: 2024-03-28 21:49:13

  1. Monitoring Floating Solar Tracker Based on Axis Coordinates using LoRa Network

    Abyan Arief Fernandez, Andrian Rakhmatsyah, Aulia Arif Wardana. International Journal of Renewable Energy Development, 9 (2), 2020. doi: 10.14710/ijred.9.2.141-149
  2. Effect of Tracking System Configurations to Beam Aperture Irradiance of Parabolic Dish in Bandung, Indonesia

    Rohmah N.. Proceeding - 2019 International Conference on Sustainable Energy Engineering and Application: Innovative Technology Toward Energ, 2019. doi: 10.1109/ICSEEA47812.2019.8938650