The Development of A Flexible Battery by Using A Stainless Mesh Anode



Article Metrics:
- Barker, R., Al Shaaili, I., De Motte, R. A., Burkle, D., Charpentier, T., Vargas, S. M., & Neville, A. (2019). Iron carbonate formation kinetics onto corroding and pre-filmed carbon steel surfaces in carbon dioxide corrosion environments. Applied Surface Science, 469, 135–145. https://doi.org/10.1016/j.apsusc.2018.10.238
- Cáceres, L., Vargas, T., & Herrera, L. (2009). Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions. Corrosion Science, 51(5), 971–978. https://doi.org/10.1016/j.corsci.2009.02.021
- Cui, L. F., Hu, L., Choi, J. W., & Cui, Y. (2010). Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS Nano, 4(7), 3671–3678. https://doi.org/10.1021/nn100619m
- Guo, S., Wang, H., & Han, E. H. (2018). Computational evaluation of the influence of various uniaxial load levels on pit growth of stainless steel under mechanoelectrochemical interactions. Journal of the Electrochemical Society, 165(9), 515–523. https://doi.org/10.1149/2.1071809jes
- Kocijan, A., Milosev, I., & Pihlar, B. (2003). The influence of complexing agent and proteins on the corrosion of stainless steels and their metal components. Journal of Materials Science. Materials in Medicine, 14(1), 69–77. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15348541
- Kwok, C. T., Cheng, F. T., & Man, H. C. (2000). Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution. Materials Science and Engineering A, 290(1–2), 145–154. https://doi.org/10.1016/S0921-5093(00)00899-6
- Long, B., Yang, H., Wang, F., Mao, Y., Balogun, M. S., Song, S., & Tong, Y. (2018). Chemically-modified stainless steel mesh derived substrate-free iron-based composite as anode materials for affordable flexible energy storage devices. Electrochimica Acta, 284, 271–278. https://doi.org/10.1016/j.electacta.2018.07.097
- Omanovic, S., & Roscoe, S. G. (1999). Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel. Langmuir, 15(23), 8315–8321. https://doi.org/10.1021/la990474f
- Scotto, V., Cintio, R. Di, & Marcenaro, G. (1985). The influence of marine aerobic microbial film on stainless steel corrosion behaviour. Corrosion Science, 25(3), 185–194. https://doi.org/10.1016/0010-938X(85)90094-0
- Shinata, Y., Takahashi, F., & Hashiura, K. (1987). NaCl-induced hot corrosion of stainless steels. Materials Science and Engineering, 87(C), 399–405. https://doi.org/10.1016/0025-5416(87)90404-6
- Sousa, S. R., & Barbosa, M. A. (1991). Electrochemistry of AISI 316L stainless steel in calcium phosphate and protein solutions. Journal of Materials Science: Materials in Medicine, 2(1), 19–26. https://doi.org/10.1007/BF00701683
- Tang, X., Ma, C., Zhou, X., Lyu, X., Li, Q., & Li, Y. (2019). Atmospheric corrosion local electrochemical response to a dynamic saline droplet on pure Iron. Electrochemistry Communications, 101, 28–34. https://doi.org/10.1016/j.elecom.2019.01.011
- Tsaur, C. C., Rock, J. C., Wang, C. J., & Su, Y. H. (2005). The hot corrosion of 310 stainless steel with pre-coated NaCl/Na 2so4 mixtures at 750°C. Materials Chemistry and Physics, 89(2–3), 445–453. https://doi.org/10.1016/j.matchemphys.2004.10.002
- Wei, L., Liu, Y., Li, Q., & Cheng, Y. F. (2019). Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution. Corrosion Science, 146, 44–57. https://doi.org/10.1016/j.corsci.2018.10.025
Last update: 2021-03-01 03:46:17
-
Influence of the cultivation environment on the growth of lettuce seedlings in artificial light type plant factory
Minh Quang Chau, Van Huong Dong, Danh Chan Nguyen. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 127 , 2020. doi: 10.1063/5.0030995 -
Influence of the cultivation environment on the growth of lettuce seedlings in artificial light type plant factory
Minh Quang Chau, Van Huong Dong, Danh Chan Nguyen. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 127 , 2020. doi: 10.1063/5.0030995 -
Preparation of Anode Material for Lithium Battery from Activated Carbon
Sumrit Mopoung, Russamee Sitthikhankaew, Nantikan Mingmoon. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32997 -
Anodized stainless mesh for flexible battery anodes
D-T Nguyen, K Iwai, K Kawakami, K Taguchi. IOP Conference Series: Earth and Environmental Science, 127 , 2020. doi: 10.1088/1755-1315/463/1/012137
Last update: 2021-03-01 03:46:18
-
Experimental Study on Impact of Thermal-Assisted Machining on SKD11 Steel Machinability
Hoang L.V.. International Journal on Advanced Science, Engineering and Information Technology, 10 (5), 2020. doi: 10.18517/ijaseit.10.5.13336 -
Influence of the cultivation environment on the growth of lettuce seedlings in artificial light type plant factory
Minh Quang Chau, Van Huong Dong, Danh Chan Nguyen. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 127 , 2020. doi: 10.1063/5.0030995 -
Preparation of Anode Material for Lithium Battery from Activated Carbon
Sumrit Mopoung, Russamee Sitthikhankaew, Nantikan Mingmoon. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32997 -
Anodized stainless mesh for flexible battery anodes
D-T Nguyen, K Iwai, K Kawakami, K Taguchi. IOP Conference Series: Earth and Environmental Science, 127 , 2020. doi: 10.1088/1755-1315/463/1/012137

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.