skip to main content

GIS-Based Biomass Energy Sustainability Analysis Using Analytical Hierarchy Process: A Case Study in Medellin, Cebu

1School of Engineering, University of San Carlos, Cebu City, Cebu, Philippines

2Department of Chemical Engineering, University of San Carlos, Cebu City, Cebu, Philippines

3Department of Mechanical and Manufacturing Engineering, University of San Carlos, Cebu City, Cebu, Philippines

Received: 1 Oct 2020; Revised: 7 Feb 2021; Accepted: 10 Mar 2021; Available online: 15 Mar 2021; Published: 1 Aug 2021.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The increasing demand for energy accounts for an alternative energy source. The search for biomass being abundant in an agricultural country is a suitable option to power a community. This paper used Analytical Hierarchy Process (AHP), which includes the organized hierarchy of various selection criteria, the assessment of the relative value of criteria, the comparison and an aggregate rating of the alternatives for each criterion. Specifically, the methodology used was the combination of multi-criteria and weighted-overlay analysis in a Geographical Information System (GIS) environment to provide a spatial overview of the sustainable location for sugarcane residues production in Medellin, Cebu. The study was able to identify Caputatan Sur and Canhabagat as sustainable locations for sugarcane residue production with respect to topography, cultivation area and accessibility. These locations represent 26% of the total cultivation area and average sugarcane production of the locality. The result of this study is an initial step in the support for the utilization of sugarcane residues to answer energy demand in remote areas and further promote the use of indigenous resources for energy generation.

Fulltext View|Download
Keywords: AHP; Biomass; GIS; MCA; Sustainability; Waste to Energy
Funding: University of San Carlos, Department of Science and Technology, PhilGIS

Article Metrics:

  1. Akinci, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97, 71-82. https://doi.org/10.1016/j.compag.2013.07.006
  2. Alburo, J. L. P., Garcia, J. N. M., Sanchez, P. B., & Cruz, P. C. S. (2019). Application of analytical hierarchy process (AHP) in generating land suitability index (LSI) for sugarcane in central Mindanao, Philippines. Journal of the International Society for Southeast Asian Agricultural Sciences, 25(1), 148-158
  3. Avcıoğlu, A. O., Dayıoğlu, M. A., &Türker, U. (2019). Assessment of the energy potential of agricultural biomass residues in Turkey. Renewable Energy, 138, 610-619. https://doi.org/10.1016/j.renene.2019.01.053
  4. Belton, V., Stewart, T. J. (2002). Multiple Criterial Decision Analysis. An Integrated Approach. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-1495-4_11
  5. Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., & Baxter, R. (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling, 216(1), 47-59. https://doi.org/10.1016/j.ecolmodel.2008.04.010
  6. Boyle, G. (1996). Renewable energy power for a sustainable future. Oxford University Press
  7. Budak, G., Chen, X., Celik, S., &Ozturk, B. (2019). A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy, Sustainability and Society, 9(1). https://doi.org/10.1186/s13705-019-0219-y
  8. Cadalin, M. B., Silapan, J. R., Remolador, M. V., & Ang, M. R. C. O. (2015). Biomass resource assessment on theoretical and available potential of sugarcane using LiDAR-derived agricultural land-cover map in Victorias City, Negros Occidental, Philippines. ACRS 2015 - 36th Asian Conference on Remote Sensing: Fostering Resilient Growth in Asia, Proceedings
  9. Dincer, I. (2000). Renewable Energy and Sustainable Development: A crucial review. Renew. Sustain.Energy Rev., 4(2), 157-175
  10. https://doi.org/10.1016/S1364-0321(99)00011-8
  11. Ding, G. K. C. (2008). Sustainable construction-The role of environmental assessment tools. Journal of Environmental Management, 86(3), 451-464. https://doi.org/10.1016/j.jenvman.2006.12.025
  12. Electric Power Industry Management Bureau (EPIMB), & Department of Energy (DOE). (2017). 2016 Philippine Electricity Demand-Supply. 2016 Philippine Electricity Demand-Supply Snapshot, 2, 1-14. https://www.doe.gov.ph/sites/default/files/pdf/electric_power/power_situationer/2016_power_situation.pdf
  13. FAO. (2017). Crops Processed
  14. Giri, S., Nejadhashemi, A. P., &Woznicki, S. A. (2016). Regulators' and stakeholders' perspectives in a framework for bioenergy development. Land Use Policy, 59, 143-153. https://doi.org/10.1016/j.landusepol.2016.08.028
  15. Go, A. W., &Conag, A. T. (2019). Utilizing sugarcane leaves/straws as source of bioenergy in the Philippines: A case in the Visayas Region. Renewable Energy, 132, 1230-1237. https://doi.org/10.1016/j.renene.2018.09.029
  16. Kamaruzzaman, S. N., Lou, E. C. W., Zainon, N., Mohamed Zaid, N. S., & Wong, P. F. (2016). Environmental assessment schemes for non-domestic building refurbishment in the Malaysian context. Ecological Indicators, 69(2016), 548-558. https://doi.org/10.1016/j.ecolind.2016.04.031
  17. Kheybari, S., Rezaie, F. M., Naji, S. A., & Najafi, F. (2019). Evaluation of energy production technologies from biomass using analytical hierarchy process: The case of Iran. Journal ofCleanerProduction,232,257-265. https://doi.org/10.1016/j.jclepro.2019.05.357
  18. Kurka, T. (2013). Application of the analytic hierarchy process to evaluate the regional sustainability of bioenergy developments.Energy,62,393-402. https://doi.org/10.1016/j.energy.2013.09.053
  19. Kyriakopoulos, G. L., Chalikias, M. S., Kalaitzidou, O., Skordoulis, M., &Drosos, D. (2015). Environmental viewpoint of fuelwood management. CEUR Workshop Proceedings, 1498, 416-425
  20. Malczewski, Jacek, Rinner, C. (2015). Multicriteria Decision Analysis in Geographic Information Science. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-74757-4
  21. Milbrandt, A., &Overend, R. P. (2008). Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies. Production, November. https://doi.org/10.2172/949876
  22. Morato, T., Vaezi, M., & Kumar, A. (2019). Assessment of energy production potential from agricultural residues in Bolivia. Renewable and Sustainable Energy Reviews, 102(November 2018), 14-23. https://doi.org/10.1016/j.rser.2018.11.032
  23. Myllyviita, T., Leskinen, P., Lähtinen, K., Pasanen, K., Sironen, S., Kähkönen, T., &Sikanen, L. (2013). Sustainability assessment of wood-based bioenergy - A methodological framework and a case-study. Biomass and Bioenergy, 59, 293-299. https://doi.org/10.1016/j.biombioe.2013.07.010
  24. Novero, A. U., Pasaporte, M. S., Aurelio, R. M., Madanguit, C. J. G., Tinoy, M. R. M., Luayon, M. S., Oñez, J. P. L., Daquiado, E. G. B., Diez, J. M. A., Ordaneza, J. E., Riños, L. J., Capin, N. C., Pototan, B. L., Tan, H. G., Polinar, M. D. O., Nebres, D. I., &Nañola, C. L. (2019). The use of light detection and ranging (LiDAR) technology and GIS in the assessment and mapping of bioresources in Davao Region, Mindanao Island, Philippines. Remote Sensing Applications: Society and Environment,13(April2018),1-11. https://doi.org/10.1016/j.rsase.2018.10.011
  25. PSA. (2018). Volume of Production by Region and by Province
  26. (PSA), P. S. O. (2018). Philippine Statistics Authority Selected Statistics. www.psa.gov.ph
  27. Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. https://doi.org/10.1016/0270-0255(87)90473-8
  28. Saaty, T. L. (1990). How to make a decision. International Series in Operations Research and Management Science, 175, 1-21. https://doi.org/10.1007/978-1-4614-3597-6_1
  29. Samson, R., Helwig, T., Stohl, D., &Maio, a De. (2001). Strategies for Enhancing Biomass Energy Utilization in the Philippines . October. https://doi.org/10.2172/788774
  30. Sandoval, J. A., &Tiburan, C. L. (2019). Identification of potential artificial groundwater recharge sites in Mount Makiling Forest Reserve, Philippines using GIS and Analytical Hierarchy Process. Applied Geography, 105(March2018),73-85. https://doi.org/10.1016/j.apgeog.2019.01.010
  31. Scott, J. A., Ho, W., &Dey, P. K. (2012). A review of multi-criteria decision-making methods for bioenergy systems. Energy,42(1),146-156. https://doi.org/10.1016/j.energy.2012.03.074
  32. Sevilla, K. H., Remolador, M. V, Saladaga, I. A., Baltazar, B. M., V, L. C., Rosario, M., & Ang, C. O. (2015). Estimation of rice hull energy potential using Landsat-derived agricultural maps in Camarines Sur, Philippines. Internaitonal Scientific Journal, 5
  33. Sevilla, K., Remolador, M., Baltazar, B., Saladaga, I., Inocencio, L. C., Rosario, M., & Models, A. M. (2015). Comparison of MODIS-Based Rice Extent Map and Landsat-Based Rice Classification Map in Determining Biomass Energy Potential of Rice Hull. 9(12), 1163-1166
  34. Souza, G. M., Victoria, R. L., Joly, C. A., &Verdade, L. M. (2015). Bioenergy and sustainability: Policy Brief. Scientific Committee on Problems of the Environment - SCOPE, June 2015, 4
  35. Sugar Regulatory Administration. (2015). Sugarcane roadmap 2020. Board of Investments, 2(3), 1-309
  36. Sultana, A., & Kumar, A. (2012). Optimal siting and size of bioenergy facilities using geographic information system. AppliedEnergy,94,192-201. https://doi.org/10.1016/j.apenergy.2012.01.052
  37. Vera, I., Langlois, L. (2007). Energy indicators for sustainable development.Energy,32(6),875-882. https://doi.org/10.1016/j.energy.2006.08.006
  38. Wong, J. K. W., & Li, H. (2008). Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Building and Environment,43(1),108-125. https://doi.org/10.1016/j.buildenv.2006.11.019
  39. Xiong Ying, Guang-Ming Zeng, Guiqiu Chen, L. T. (2007). Combining AHP with GIS in Synthetic Evaluation of Eco-Environment Quality-A Case Study of Hunan Province, China.EcologicalModelling,209(2-4),97-109. https://doi.org/doi.org/10.1016/j.ecolmodel.2007.06.007
  40. Zheng, G., Jing, Y., Huang, H., Zhang, X., & Gao, Y. (2009). Application of Life Cycle Assessment (LCA) and extenics theory for building energy conservation assessment. Energy, 34(11), 1870-1879. https://doi.org/10.1016/j.energy.2009.07.035
  41. Zopounidis, C., Pardalos, P. (2010). Handbook of Multicriteria Analysis. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-92828-7

Last update:

  1. Assessing the Feasibility of Waste-to-Energy Projects for Sustainable Solid Waste Management in the National Capital Region, Philippines

    Arvin De La Cruz, Carlo Bernal, J. Baeyens. E3S Web of Conferences, 566 , 2024. doi: 10.1051/e3sconf/202456602001
  2. Experimental analysis of performance and emission of a turbocharged diesel engine operated in dual-fuel mode fueled with bamboo leaf-generated gaseous and waste palm oil biodiesel/diesel fuel blends

    Biswajeet Nayak, Thingujam Jackson Singh, Anh Tuan Hoang. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021. doi: 10.1080/15567036.2021.2009595
  3. Optimization and Decision-Making in the Renewable Energy Industry

    Meral Güldeş, Ömer Faruk Gürcan. Advances in Environmental Engineering and Green Technologies, 2022. doi: 10.4018/978-1-6684-2472-8.ch008

Last update: 2024-11-21 04:42:13

No citation recorded.