Energy-Exergy Analysis of A Novel Multi-Pass Solar Air Collector With Perforated Fins



This work presents performance analysis of a novel multi-pass solar air collector with perforated fins (MPSACF) in winter conditions, Ankara province, Turkey. The aim of this work is to experimentally test and compare the performance of the two different design of solar collectors in the same climatic conditions. In addition, a double-pass solar air collector without fins (DPSAC) at the same absorber area was manufactured and tested as a control group. The total absorber area of both solar collectors is 0.325 m2. Thermal effects for performance improvement of the collectors have been designated. Average thermal efficiency values of DPSAC and MPSACF were calculated as 47.85% and 51.86%, 67.10% and 72.86%, respectively in experiments performed at 0.0069 kg/s (0.7 m/s air velocity) and 0.0087 kg/s (0.9 m/s air velocity) mass flow rates. Exergy efficiency of DPSAC and MPSACF were 2.10-17.12% and 8.74-23.97%, respectively. Coefficient of performance(COP) values were ocomputed 4.63 and 4.94, 3.18 and 3.48 respectively in experiments performed at 0.0069 kg/s and 0.0087 kg/s mass flow rates. Although the MPSACF has high efficiency values, COP values are lower due to the presence of dual fans. Because of their high thermal efficiency, both collectors can be effectively practiced for applications such as preheating, space heating and ventilation, greenhouse heating and product drying
©2019. CBIORE-IJRED. All rights reserved
Article History: Received May 16th 2018; Received in revised form October 16th 2018 ; Accepted January 6th 2019; Available online
How to Cite This Article: Aktaş, M., Sözen, A., Tuncer, A.D., Arslan, E., Koşan, M., Çürük, O. (2019) Energy-exergy analysis of a novel multi-pass solar air collector with perforated fins. International Journal of Renewable Energy Development, 8(1), 47-55.
http://dx.doi.org/10.14710/ijred.8.1.47-55
Article Metrics:
- Abuşka, M. & Şevik, S. (2017) Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper. Solar Energy, 158, 259-277
- Aktaş, M., Sözen, A., Amini, A. & Khanlari, A. (2017) Experimental Analysis and CFD Simulation of Infrared Apricot Dryer with Heat Recovery. Drying Technolgy, 35(6), 766–783
- Aktaş, M., Şevik, S., Dolgun, E.C. & Demirci, B. (2018) Drying of grape pomace with a double pass solar collector. Drying Technology, 1-13
- Alta, Z.D., Çağlayan, N., Ezan, M.A. & Ertekin, C. (2015) Thermal analysis of a solar air heater for drying purposes. Agricultural Engineering International, 193-199
- Azaizia, Z., Kooli, S., Elkhadraoui, A., Hamdi, I., Guizani, A. (2017) Investigation of a new solar greenhouse drying system for peppers. International Journal of Hydrogen Energy, 42, 8818-8826
- Blowmik, H. & Amin, R. (2017) Efficiency improvement of flat plate solar collector using reflector. Energy Report, 3, 119-123
- Cengel, Y.A. & Ghajar, A.J. (2011) Heat and Mass Transfer: Fundamentals and Applications Fourth Edition in SI Units. McGraw-Hill, New York
- Devecioglu, A.G. & Oruc, V. (2017) Experimental investigation of thermal performance of a new Solar air collector with porous surface. Energy Procedia, 113, 251-258
- Fudholi, A., Sopian, K., Ruslan, M.H. &Othman, M.Y. (2013) Performance and cost benefits analysis of double-pass solar collector with and without fins. Energy Conversion and Management, 76, 8-19
- Ghiami, A. & Ghiami, S. (2018) Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering, 133, 797-808
- Gill, R.S., Singh, S. & Singh, P.P. (2013) Low cost solar air heater. Energy Conversion and Management, 57, 131–142
- Hernández, A.L. & Quiñonez, J.E. (2018) Experimental validation of an analytical model for performance estimation of natural convection solar air heating collectors. Renewable Energy, 117, 202-216
- Hosseini, S.S., Ramiar, A. & Ranjbar, A.A. (2018) Numerical investigation of natural convection solar air heater with different fins shape. Renewable Energy, 117, 488-500
- Kareem, M.W., Gilani, I., Habib, K., Irshad, K. & Baran Saha, B. (2017) Performance analysis of a multi-pass solar thermal collector system under transient state assisted by porous media. Solar Energy, 158, 782-791
- Karim, M.A., Perez, E. & Amin, Z.Y. (2014) Mathematical modelling of counter flow v-grove solar air collector. Renewable Energy, 67, 192-201
- Kays, W.M. (1966) Convective Heat and Mass Transfer. McGraw-Hill, New York
- Klein, S.A. (1975) Calculation of flat plate collector loss coefficients. Solar Energy, 17, 79-80
- Lesny, J., Panfil, M., Urbaniak, M. (2018) Influence of irradiance and irradiation on characteristic parameters for solar air collector prototype. Solar Energy, 164, 224-230
- Naphon, P. (2005) On the performance and entropy generation of the double-pass solar air heater with longitudinal fins. Renewable Energy, 30(9), 1345-1357
- Olimat, A.N. (2017) Study of Fabricated Solar Dryer of Tomato Slices Under Jordan Climate Condition. International Journal of Renewable Energy Development, 6(2), 93-101
- Othman, M.Y.H., Yatima, B., Sopian, K. & Abu Bakara, M.N. (2005) Performance analysis of a double-pass photovoltaic/thermal (PV/T) solar collector with CPC and fins. Renewable Energy, 30, 2005–2017
- Ozgen, F., Esen, M. & Esen, H. (2009) Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans. Renewable Energy, 34, 2391–2398
- Priyam, A. & Chand, P. (2018) Effect of wavelength and amplitude on the performance of wavy finned absorber solar air heater. Renewable Energy, 119, 690-702
- Saxena, A., Varun & El-Sebaii, A.A. (2015) A thermodynamic review of solar air heaters. Renewable and Sustainable Energy Reviews, 43, 863-890
- Şevik, S. (2013) Design, experimental investigation and analysis of a solar drying system. Energy Conversion and Management, 68, 227-234
- Tiwari, S. & Tiwari, G.N. (2017) Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Energy, 128, 183-195
- Zare, D., Minaei, S., Mohamad Zadeh, M. & Khoshtaghaza, M.H. (2006)Computer simulation of rough rice drying in a batch dryer. Energy Conversion and Management, 47, 3241-3254
- Zheng, W., Zhang, H., You, S., Fu, Y. & Zheng, X. (2017) Thermal performance analysis of a metal corrugated packing solar air collector in cold regions. Applied Energy, 203, 938-947
Last update: 2021-02-26 00:04:20
-
CFD modeling and performance evaluation of multipass solar air heaters
Numerical Heat Transfer, Part A: Applications, 76 (6), 2019. doi: 10.1080/10407782.2019.1637228 -
A STUDY ON TRANSPORT PLANNING SOLUTIONS TO MEET THE DEVELOPMENT OF LOGISTICS SERVICES, A CASE IN CAI MEP-THI VAI PORT
Van Tai Pham. Humanities & Social Sciences Reviews, 8 (1), 2020. doi: 10.18510/hssr.2020.8195 -
Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater
Ataollah Khanlari, Adnan Sözen, Ceylin Şirin, Azim Doğuş Tuncer, Afsin Gungor. Journal of Cleaner Production, 127 , 2020. doi: 10.1016/j.jclepro.2019.119672 -
Analysis of exergetic performance for a solar air heater with metal foam fins
Ammar A. Farhan, Zain Alabdeen H. Obaid, Sally Q. Hussien. Heat Transfer, 49 (5), 2020. doi: 10.1002/htj.21769
Last update: 2021-02-26 00:04:21
-
CFD modeling and performance evaluation of multipass solar air heaters
Numerical Heat Transfer, Part A: Applications, 76 (6), 2019. doi: 10.1080/10407782.2019.1637228 -
4E analysis of infrared-convective dryer powered solar photovoltaic thermal collector
Arslan E.. Solar Energy, 127 , 2020. doi: 10.1016/j.solener.2020.07.071 -
Potential assessment of solar energy for electricity development in Vietnam: Prospects, scenarios and proposals
Dong V.H.. Journal of Mechanical Engineering Research and Developments, 43 (3), 2020. -
Parameters affecting fiber quality and productivity of coir spinning machines
Hoang A.T.. Journal of Mechanical Engineering Research and Developments, 43 (5), 2020. -
Performance enhancement of a greenhouse dryer: Analysis of a cost-effective alternative solar air heater
Ataollah Khanlari, Adnan Sözen, Ceylin Şirin, Azim Doğuş Tuncer, Afsin Gungor. Journal of Cleaner Production, 127 , 2020. doi: 10.1016/j.jclepro.2019.119672 -
Analysis of exergetic performance for a solar air heater with metal foam fins
Ammar A. Farhan, Zain Alabdeen H. Obaid, Sally Q. Hussien. Heat Transfer, 49 (5), 2020. doi: 10.1002/htj.21769 -
A comprehensive review on energy and exergy analysis of solar air heaters
Ghritlahre H.K.. Archives of Thermodynamics, 41 (3), 2020. doi: 10.24425/ather.2020.134577

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.