skip to main content

Sustainable Green Charcoal Briquette from Food Waste via Microwave Pyrolysis Technique: Influence of Type and Concentration of Binders on Chemical and Physical Characteristics

1Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia

2Renewable Energy and Advance Chemical Technology (REACT) Research Group, Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan, Malaysia

Received: 26 Sep 2020; Revised: 5 Jan 2021; Accepted: 3 Feb 2021; Available online: 17 Feb 2021; Published: 1 Aug 2021.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Turning the food waste into a fuel source such as charcoal briquette was one of the alternatives in managing the food wastes disposal. In this present work, food waste was converted into charcoal by microwave irradiation technique. Application of binders such as potato starch and carboxymethyl cellulose (CMC) at ratios of 5%,10% and 15% for briquetting purpose were investigated in terms of its chemical and physical characteristics. Result showed that the briquette formed using the starch as the binder performed better in combustion quality than that of carboxymethylcellulose (CMC). A good quality of charcoal briquette has capability to withstand impact during packaging, handling, and transportation. Standard physical characteristic that was tested for briquette includes moisture content, compressive strength, and impact resistance. Calorific value of briquette was studied to analyse energy content in the briquette. The study showed that food waste charcoal has calorific value comparable to that of the commercial charcoal. However, the addition of binders showed some reduction in the energy content, with more reduction when CMC is added. In terms of combustion characteristic, the addition of binders does not alter the combustion profile in comparison to the raw food waste charcoal’s profile. The ignition and burnout temperatures of the food waste charcoal briquette showed a better performance with and without binders as compared to the commercial charcoal.  In terms of physical characteristics, CMC has showed as an excellent binder with highest shatter index value. Overall, in terms of chemical properties, addition of 10% starch showed a better performance, while addition of 10% CMC showed a better performance in terms of physical characteristics. This finding is beneficial for briquette industry in the development of green product using biomass, but further research is essential before production of briquette take place.

Fulltext View|Download
Keywords: Food wastes charcoal briquette; microwave pyrolysis technique; waste-to-wealth; CMC; starch.

Article Metrics:

  1. Antunes, E., Jacob, M. V., Brodie, G., & Schneider, P. A. (2018). Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties. Journal of Analytical and Applied Pyrolysis, 129(October 2017), 93–100.
  2. Biagini, E., Lippi, F., Petarca, L., & Tognotti, L. (2002). Devolatilization rate of biomasses and coal-biomass blends: An experimental investigation. Fuel, 81(8), 1041–1050.
  3. Borowski, G., Stȩpniewski, W., & Wójcik-Oliveira, K. (2017). Effect of starch binder on charcoal briquette properties. International Agrophysics, 31(4), 571–574.
  4. Bu, Q., Morgan, H. M., Liang, J., Lei, H., & Ruan, R. (2016). Catalytic Microwave Pyrolysis of Lignocellulosic Biomass for Fuels and Chemicals. 1, 69–123.
  5. Cahyono, R. B., Santoso, J., & Miliati, R. (2017). Biomass Briquettes using Indonesia Durian Seeds as Binder Agent : The Effect of Binder Concentration on the Briquettes Properties. Chemical Engineering Trans, 56, 1663–1668.
  6. Elkhalifa, S., Al-Ansari, T., Mackey, H. R., & McKay, G. (2019). Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 144(September 2018), 310–320.
  7. Foong, S. Y., Abdul Latiff, N. S., Liew, R. K., Yek, P. N. Y., & Lam, S. S. (2020). Production of biochar for potential catalytic and energy applications via microwave vacuum pyrolysis conversion of cassava stem. Materials Science for Energy Technologies, 3, 728–733.
  8. Idris, S. S., Rahman, N. A., & Ismail, K. (2012). Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresource Technology, 123.
  9. Januri, Z.B., Idris, S. S., Rahman, N. A., Matali, S., Manaf, S. F. A., Rahman, A. F. A., & Rahman, S. N. F. S. A. (2016). Solid char characterization from effect of radiation time study on microwave assisted pyrolysis of kitchen waste. Journal of Engineering Science and Technology, 11(Special Issue onsomche2015)
  10. Januri, Zakiuddin B., Idris, S. S., Rahman, N. A., Matali, S., Manaf, S. F. A., Rahman, A. F. A., & Rahman, S. N. F. S. A. (2016). Solid char characterization from effect of radiation time study on microwave assisted pyrolysis of kitchen waste. Journal of Engineering Science and Technology, 11(Special Issue onsomche2015), 50–62
  11. Kadlimatti, H. M., Raj Mohan, B., & Saidutta, M. B. (2019). Microwave-assisted pyrolysis of food waste: optimization of fixed carbon content using response surface methodology. Biofuels, 0(0), 1–8.
  12. Kurkova, M., Klika, Z., Martinec, P., & Pegrimocova, J. (2003). Composition of bituminous coal in dependence on environment and temperature of alteration. Bulletin of Geosciences, 78(1), 23–34
  13. Li, J., Dai, J., Liu, G., Zhang, H., Gao, Z., Fu, J., He, Y., & Huang, Y. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228–244.
  14. Liang, M., Lu, W., Lei, P., Wang, L., Wang, B., Li, B., Shen, Y., & Zhang, K. (2019). Physical and Combustion Properties of Binder-Assisted Hydrochar Pellets from Hydrothermal Carbonization of Tobacco Stem. Waste and Biomass Valorization, 0123456789.
  15. Liu, H., Ma, X., Li, L., Hu, Z. F., Guo, P., & Jiang, Y. (2014). The catalytic pyrolysis of food waste by microwave heating. Bioresource Technology, 166, 45–50.
  16. Menéndez, J. A., Menéndez, E. M., Iglesias, M. J., García, A., & Pis, J. J. (1999). Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon, 37(7), 1115–1121.
  17. Olugbade, T., Ojo, O., & Mohammed, T. (2019). Influence of Binders on Combustion Properties of Biomass Briquettes: A Recent Review. Bioenergy Research.
  18. Pallavi, H., Srikantaswamy, S., Kiran, B., Vyshnavi, D., & Ashwin, C. (2013). Briquetting agricultural waste as an energy source. Journal of Environmental Science, Computer Science and Engineering & Technology, 2(1), 160–172
  19. Richards, S. R. (1990). Physical testing of fuel briquettes. Fuel Processing Technology, 25(2), 89–100.
  20. Sotannde, O. A. ., Oluyege, A. O. ., & Abah, G. B. . (2010). Physical and combustion properties of charcoal briquettes from neem wood residues. International Agrophysics, 24(August 2017), 189–194
  21. SW Corp. (n.d.). Laporan Komposisi Sisa Pepejal.
  22. Timberlake, K. C. (2018). Chemistry : An introduction to general, organic, and biological chemistry, global edition. Pearson Education, Limited
  23. Zanella, K., Concentino, V. O., & Taranto, O. P. (2017). Influence of the Type of Mixture and Concentration of Different Binders on the Mechanical Properties of " Green " Charcoal Briquettes. Chemical Engineering Transactions, 57(June), 199–204.
  24. Zanella, K., Gonçalves, J. L., & Taranto, O. P. (2016). Charcoal Briquette Production Using Orange Bagasse and Corn Starch. Chemical Engineering Transactions, 49(2004), 313–318.
  25. Zubairu, A., & Gana, S. A. (2014). Production and Characterization of Briquette Charcoal by Carbonization of Agro-Waste. Energy and Power, 4(2), 41–47.

Last update:

  1. Intelligent approaches for sustainable management and valorisation of food waste

    Zafar Said, Prabhakar Sharma, Quach Thi Bich Nhuong, Bhaskor J Bora, Eric Lichtfouse, Haris M. Khalid, Rafael Luque, Xuan Phuong Nguyen, Anh Tuan Hoang. Bioresource Technology, 377 , 2023. doi: 10.1016/j.biortech.2023.128952
  2. Briquette quality assessment from corn husk, bagasse, and cassava roots using banana peels, wastepaper, and clay soil as binders

    Lukuba N. Sweya, Nyangi T. Chacha, Joshua Saitoti. Environmental Quality Management, 2023. doi: 10.1002/tqem.22052
  3. Emerging Technologies for Future Sustainability

    Michelle S. Carbonell, Al Rey C. Villagracia, Hui Lin Ong, Ma. Kathrina M. Pobre. Green Energy and Technology, 2023. doi: 10.1007/978-981-99-1695-5_11
  4. Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove

    Somchet Chaiyalap, Ritthikrai Chai-ngam, Juthaporn Saengprajak, Jenjira Piamdee, Apipong Putkham, Arnusorn Saengprajak. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.56575
  5. Production of biochar briquettes from torrefaction of pine needles and its quality analysis

    Madhuka Roy, Krishnendu Kundu. Bioresource Technology Reports, 22 , 2023. doi: 10.1016/j.biteb.2023.101467
  6. Facile application of used engine oil in high sulfur coal briquetting to reduce the hazardous emission gases

    Aqeel Ahmed Shah, Muhammad Azam Usto, Taufeeq Ahmed, Abul Sattar Jatoi, Zubair Hashmi, Zubair Ahmed Chandio, Siraj Ahmed Bughio, Arshad Iqbal, Sajid Hussain Siyal, Abdul Kareem Shah. International Journal of Coal Preparation and Utilization, 43 (7), 2023. doi: 10.1080/19392699.2022.2096017
  7. The effect of aeration rate and feedstock density on biodrying performance for wet refuse-derived fuel quality improvement

    Tanik Itsarathorn, Sirintornthep Towprayoon, Chart Chiemchaisri, Suthum Patumsawad, Awassada Phongphiphat, Abhisit Bhatsada, Komsilp Wangyao. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.56035
  8. Multivariate decisions: Modelling waste-based charcoal briquette formulation process

    R.N. Ossei-Bremang, E.A. Adjei, F. Kemausuor. Bioresource Technology Reports, 22 , 2023. doi: 10.1016/j.biteb.2023.101483
  9. Investigation of the aerobic biochemical treatment of food waste: A case study in Zhejiang and Jiangsu provinces in China

    Dandan Liu, Xinxin Ma, Jianli Huang, Zhifei Shu, Xu Chu, Yangyang Li, Yiying Jin. Science of The Total Environment, 806 , 2022. doi: 10.1016/j.scitotenv.2021.150414
  10. Pyrolytic Oil Yield from Waste Plastic in Quezon City, Philippines: Optimization Using Response Surface Methodology

    Joselito Abierta Olalo. International Journal of Renewable Energy Development, 11 (1), 2022. doi: 10.14710/ijred.2022.41457
  11. COVID-19 and industrial waste mitigation via thermochemical technologies towards a circular economy: A state-of-the-art review

    Charles B. Felix, Aristotle T. Ubando, Wei-Hsin Chen, Vahabodin Goodarzi, Veeramuthu Ashokkumar. Journal of Hazardous Materials, 423 , 2022. doi: 10.1016/j.jhazmat.2021.127215
  12. Consumer Motivation behind the Use of Ecological Charcoal in Cameroon

    Ahmed Moustapha Mfokeu, Elie Virgile Chrysostome, Jean-Pierre Gueyie, Olivier Ebenezer Mun Ngapna. Sustainability, 15 (3), 2023. doi: 10.3390/su15031749
  13. Microwave Pyrolysis Combined with CO2 and Steam as Potential Approach for Waste Valorization

    Shin Ying Foong, Rock Keey Liew, Bernard How Kiat Lee, Su Shiung Lam. Key Engineering Materials, 914 , 2022. doi: 10.4028/p-q43662
  14. Physical and Chemical Characteristics of Agricultural-Plastic Wastes for Feasibility of Solid Fuel Briquette Production

    Nurul Ain Ab Jalil, Nur Asyikin Mokhtaruddin, Chin Hua Chia, Irfana Kabir Ahmad, Mohamad Jani Saad, Mahanim Sarif. Sustainability, 14 (23), 2022. doi: 10.3390/su142315751
  15. Optimisation of Physio-chemical Properties of Blended Palm Kernel Shell and Decanter Cake Briquettes

    Rejoice Ntiriwaa Ossei-Bremang, Eunice Akyereko Adjei, Thomas Mockenhaupt, Tobias Bar-Nosber, Francis Kemausuor. Materials Circular Economy, 5 (1), 2023. doi: 10.1007/s42824-023-00079-5
  16. The effect of microwave pyrolysis on product characteristics and bromine migration for a non-metallic printed circuit board

    Kuo-Hsiung Lin, Jiun-Horng Tsai, Chen-Laun Lan, Hung-Lung Chiang. Waste Management, 153 , 2022. doi: 10.1016/j.wasman.2022.08.030
  17. Prosopis juliflora valorization via microwave-assisted pyrolysis: Optimization of reaction parameters using machine learning analysis

    Dadi V. Suriapparao, B. Rajasekhar Reddy, Chinta Sankar Rao, Lakshman Rao Jeeru, Tanneru Hemanth Kumar. Journal of Analytical and Applied Pyrolysis, 169 , 2023. doi: 10.1016/j.jaap.2022.105811
  18. Waste to energy: An experimental study on hydrogen production from food waste gasification

    Ashok Kumar Koshariya, M. Sivaram Krishnan, S. Jaisankar, Ganesh Babu Loganathan, T. Sathish, Ümit Ağbulut, R. Saravanan, Le Thanh Tuan, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.05.221
  19. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification

    Van Giao Nguyen, Thanh Xuan Nguyen-Thi, Phuoc Quy Phong Nguyen, Viet Dung Tran, Ümit Ağbulut, Lan Huong Nguyen, Dhinesh Balasubramanian, Wieslaw Tarelko, Suhaib A. Bandh, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.05.049
  20. Physicochemical changes and energy properties of torrefied rubberwood biomass produced by different scale moving bed reactors

    Pumin Kongto, Arkom Palamanit, Sumate Chaiprapat, Nakorn Tippayawong, Jarunee Khempila, Su Shiung Lam, Asif Hayat, Peter Nai Yuh Yek. Renewable Energy, 219 , 2023. doi: 10.1016/j.renene.2023.119542

Last update: 2023-12-09 16:11:02

No citation recorded.