skip to main content

Effect of Different Hydrothermal Temperatures on the Properties on Nano-Silica (SiO2) of Rice Husk

1Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia

2Department of Food Technology and Nutrition, Faculty of Halal Food Science, Djuanda University, Bogor, 16720, Indonesia

Received: 4 Jan 2022; Revised: 15 Mar 2022; Accepted: 6 Apr 2022; Available online: 18 Apr 2022; Published: 4 Aug 2022.
Editor(s): Peter Nai Yuh Yek
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Rice husk has high silica (SiO2) content and can be used as the primary material for making nano-silica. One of the methods for synthesizing nano-silica was the hydrothermal method. The objective of this study was to synthesize nano-silica from rice husks by observing the effect of temperature in the hydrothermal process on the structure, electrical and particle properties of nano-silica. The hydrothermal process temperature was 150, 200, and 250 °C for 4 hours. The results showed that all nano-silicas were in the amorphous phase. The particle size was in the range of 0.16-13.49 nm with more uniform size distribution on nano-silicas of 200 °C and 250 °C than nano-silica at 150 °C. These three nano-silicas were included in the semiconductor category by increasing temperature and frequency. In addition, these treatment variations resulted 200 °C for 4 hours and pressure of 2 atm as the optimum treatment for manufacturing nano-silica of rice husk ash. This nano-silica could be used as semiconductor material for electronic industry.

Fulltext View|Download
Keywords: Amorphous; hydrothermal; semiconductor; rice husk; nano-silica size

Article Metrics:

  1. Adli, M. Z., Sari, M. Y., & Irzaman. (2018). Extraction silicon dioxide (SiO2) from charcoal of baggase (Saccharum officinarum L). Earth and Environmental Science, 187, 1-6. DOI: https://doi.org/10.1088/1755-1315/187/1/012004
  2. Aminullah, Rohaeti E, Yuliarto, & Irzaman. (2018). Reduction of silicon dioxide from bamboo leaves and its analysis using energy dispersive x-ray and fourier transform-infrared. Earth and Environmental Science, 209, 1-8. DOI: https://doi.org/10.1088/1755-1315/209/1/012048
  3. Avadi, M. R., Sadeghi, A. M. M, Mohammadpour, N., Abedin, S., Atyabi, F., Dinarvand, R., & Rafiee, T. M. (2010). Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine : nanotechnology, biology, and medicine, 6(1), 58 - 53. DOI: https://doi.org/10.1016/j.nano.2009.04.007
  4. [BPS] Badan Pusat Statistik. (2019). Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi, 2018-2019. Badan Pusat Statistik, Jakarta. In Indonesian
  5. Budiana. (2016). Preparasi Elektrolit SOFC 8YSZ, 20 YBDC dan Pengaruh Co-firing Bi2O¬-20 YBDC pada Sifat Listrik. Thesis. Sepuluh Nopember Institute of Technology, Surabaya. In Indonesian
  6. Burkowicz, A., Galos, K., & Guzik, K. (2020). The resource base of silica glass sand versus glass industry development: The case of Poland. Resources, 9(11), 134. https://doi.org/10.3390/resources9110134
  7. Byrappa, K., & Masahiro, Y. (2001). Handbook of Hydrothermal Technology. Noyes Publications, New Jersey
  8. Deviani, S. S, Mahatmanti, F. W., & Widiarti, N. (2018). Sintesis dan karakterisasi zeolit dari abu sekam padi menggunakan metode hidrotermal. Indonesian Journal of Chemical Science, 7(1), 87 - 93. DOI: 10.15294/IJCS.V7I2.24343
  9. Har, N. P., Palupi, Irmansyah, & Irzaman. (2020). Analysis of the electrical impedance and functional group of silicon dioxide (SiO2) from rice straw. Earth and Environmental Science, 460, 1-6. DOI: 10.1088/1755-1315/460/1/012031
  10. Hasri, H., Muharram, M., & Nadwo, F. (2020). A Synthesis nanosilica of bamboo’s leaf (Bambusa Sp.) by using hydrothermal method. Jurnal Kartika Kimia, 3(2), 96-100. In Indonesian. DOI: https://doi.org/10.26874/jkk.v3i2.56
  11. Hossain, S. K. S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. Journal of Asian Ceramic Societies, 6(4), 299-313. DOI: https://doi.org/10.1080/21870764.2018.1539210
  12. Husain, A. A. F., Hasana, W. Z. W., Shafie, S., Hamidon, M. N., & Pandey, S.S. (2018). A review of transparent solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 9, 779-791. DOI: https://doi.org/10.1016/j.rser.2018.06.031
  13. Iftitahiyah, V. N., Prasetyoko, D., Nur, H., Bahruji, H., & Hartati. (2018). Synthesis and characterization of zeolite NaX from Bangka Belitung Kaolin as alternative precursor. Malaysian Journal of Fundamental and Applied Sciences, 14(4), 414-418. DOI: 10.11113/mjfas.v14n4.964
  14. Irzaman, Cahyani, L. D., Aminullah, Maddu, A., Yuliarto, B., & Siregar U.J. (2020). Biosilica properties from rice huck using various HCl concentrations and frequencies sources. Egyptian Journal of Chemistry, 63(2), 363-371. DOI: 10.21608/EJCHEM.2019.8044.1679
  15. Irzaman, Oktaviani, & Irmansyah. (2018). Ampel bamboo leaves silicon dioxide (SiO2) extraction. Earth and Environmental Science, 141, 1-8. DOI: https://doi.org/10.1088/1755-1315/141/1/012014
  16. Irzaman, Yustaeni, D., Aminullah, Irmansyah, & Yuliarto, B. (2021). Purity, morphological, and electrical characterization of silicon dioxide from cogon grass (Imperata cylindrica) using different ashing temperatures. Egyptian Journal of Chemistry, 64(8), 4143-4149. DOI: 10.21608/EJCHEM.2019.15430.1962
  17. Jal, P. K., Sudarshan, M., Saha, A., Patel, S., & Mishra, B. K. (2004). Synthesis and characterization of nanosilica prepared by precipitation method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240(1-3), 173–178. DOI: https://doi.org/10.1016/j.colsurfa.2004.03.021
  18. Kafshgari, M. H, Mohammad, K., Mobina, K., & Sahar, K. (2010). Reinforcement of chitosan nanoparticles obtained by an ionic cross-linking process. Iranian Polymer Journal, 20(5), 445-456
  19. Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
  20. Kwok, K. N. (1995). Complete Guide to Semiconductor Device. McGraw-Hill,inc., United States of America
  21. Maesaroh. (2020). Sintesis Nanosilika dari Daun Bambu Apus (Gigantaochlo apus) dengan variasi Suhu Proses Hidrotermal. Thesis. IPB University, Bogor. In Indonesian
  22. Mohammadikish, M. (2014). Hydrothermal synthesis, characterization and optical properties of ellipsoid shape α-Fe2O3 nanocrystals. Ceramics International, 40, 1351-1358. DOI: 10.1016/j.ceramint.2013.07.016
  23. Nabeshi, H., Yoshikawa, T., Arimori, A., Yoshida, T., Tochigi, S., Hirai, T., Akase, T., Nagano, K., Abe, Y., Kamada, H., Tsunoda, Shinichi, Itoh, N., Yoshioka, Y., & Tsutsumi, Y. (2011). Effect of surface properties of silica nanoparticles ontheir cytotoxicity and cellular distribution in murine macrophages. Nanoscale Research Letters, 6 (23), 100-103. DOI: 10.1186/1556-276X-6-93
  24. Nasir, H., Rahman, N., Zulfiqar, Khan, T, Ali, S., Khan, R., & Hayat, K. (2020). Variations in structural, optical, and dielectric properties of CuO nanostructures with thermal decomposition. Journal of Materials Science: Materials in Electronics, 31(13), 1-8. DOI: 10.1007/s10854-020-03614-1
  25. Nidhin, M., Indumathy, R., Sreeram, K. J., and Nair, B. U. (2008). Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 31(1), 93-96. DOI: 10.1007/s12034-008-0016-2
  26. Nikmatin, S., Purwanto, S., Maddu, A., Mandang, T., & Purwanto, A. (2012). Analisis struktur selulosa kulit rotan dengan filler bionanokomposit dengan difraksi sinar-X. Jurnal Sains Materi Indonesia, 13(2), 97-102. In Indonesian. DOI: 10.17146/jsmi.2012.13.2.4712
  27. Purwamargapratala, Y., & Purnama, S. (2010). Regangan kisi dan ukuran butir elektrolit padat komposit alkali-alumina. Urania, 16(2), 98-104. In Indonesian. DOI: http://dx.doi.org/10.17146/urania.2010.16.2.2434
  28. Qin, W. & Szpunar, J. A. (2005). Origin of lattice strain in nanocrystalline materials. Philosophical Magazine Letters, 85(12), 649-656. DOI: https://doi.org/10.1080/09500830500474339
  29. Rahma, C. (2017). Sintesis dan karakterisasi material fotokatalis Na2Ti6O13 menggunakan metode hidrotermal. Jurnal Optimalisasi, 3(4), 28-38. In Indonesian. DOI: https://doi.org/10.35308/jopt.v3i4.263
  30. Rahman, I. A., & Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel: Size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. Journal of Nanomaterials, 2012, 1-5. DOI: https://doi.org/10.1155/2012/132424
  31. Rohaeti, E., Hikmawati, & Irzaman. (2010). Production of semiconductor materials silicon from silica rice husk waste as alternative silicon. Materials Science and Technology, 265 - 272
  32. Setiawan, W. K. (2015). Preparasi Nanosilika dari Abu Ketel dengan Metode Kopresipitasi sebagai Aditif Membran Elektrolit Berbasis Kitosan. Thesis. IPB University, Bogor. In Indonesian
  33. Suwanprateeb, J. & Hatthapanit, K. (2002). Rice-husk-ash-based silica as a filler for embedding composites in electronic devices. Journal of Applied Polymer Science, 86, 3013-3020. DOI: 10.1002/app.11291
  34. Terada, S., Ueda, H., Ono, T., & Saitow, K. –I. (2022). Orange–red Si quantum dot LEDs from recycled rice husks. ACS Sustainable Chemistry & Engineering, 10(5), 1765-1776. DOI: https://doi.org/10.1021/acssuschemeng.1c04985
  35. Toshtay, K. & Auezov, A. B. (2020). Hydrogenation of vegetable oils over a palladium catalyst supported on activated diatomite. Catalysis in Industry, 12(1), 7-15. DOI: 10.1134/S2070050420010109
  36. Utomo, S.S. (2015). Sintesis dan Pencirian Nanosilika Berbahan Dasar Abu Ketel Industri Gula dengan Variasi Waktu Aging dan pH Presipitasi. Thesis. IPB University, Bogor. In Indonesian
  37. Verina, H. (2014). Optimasi Kelajuan Suhu Annealing untuk Ekstraksi Silika dari Abu Sekam Padi serta Uji Kandungan Molekul. Thesis. IPB University, Bogor. In Indonesian
  38. Yazdani, A., Rezaie, H. R., & Ghassai, H. (2010). Investigation of hydrothermal synthesis of wollastonite using silica and nano silica at different pressures. Journal of Ceramic Processing Research. 11(3), 348~353. DOI: 10.36410/jcpr.2010.11.3.348
  39. Yuan, H., Gao, F., Zhang, Z., Miao, L., Yu, R., Zhao, H., & Lan, M. (2010). Study of controllable preparation of silica nanoparticles with multi-sized and their size-dependent cytotoxicity in pheochromocytoma cells and human embryonic kidney cells. Journal of Health Science, 56 (6), 632-640. DOI: 10.1248/jhs.56.632
  40. Yusof. A. M, Nizam, N. A, & Rashid, N. A. (2010). Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolite. Journal of Porous Mater, 17(1), 39-47. DOI: 10.1007/s10934-009-9262-y
  41. Yuvakkumar, R., Elango, V., Rajendran, V., & Kannan, N. (2012). High-purity nanosilica powder from rice husk using a simple chemical method. Journal of Experiment Nanoscience, 9(3), 272-281. DOI: https://doi.org/10.1080/17458080.2012.656709

Last update:

No citation recorded.

Last update:

No citation recorded.