skip to main content

Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment

NEXT ENERGY • EWE Research Centre for Energy Technology at Carl von Ossietzky University, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany

Published: 15 Feb 2014.
Editor(s):

Citation Format:
Abstract
In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB). The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air) in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.
Fulltext View|Download
Keywords: air plasma, carbon felt electrode, graphite surface modification, vanadium-redox-flow battery

Article Metrics:

  1. Abbas, G., Papakonstantinou, P., Iyer,G.R.S., Kirkman,I.W. & Chen, L.I.(2007)Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Physical Review,B75(19), 195429. https://doi.org/10.1103/PhysRevB.75.195429
  2. Bismarck, A., Kumru, M.E.&Springer, J.(1999)Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties.Journal of Colloid and Interface Science, 210(1),60-72. https://doi.org/10.1006/jcis.1998.5912
  3. Brown, N.M.D., Cui, N. & McKinley, A. (1998)A study of the topography of a glassy carbon surface following low-power radio-frequency oxygenplasma treatment.Applied Surface Science, 133(3), 157-165. https://doi.org/10.1016/S0169-4332(98)00198-6
  4. Cvelbar, U., Markoli,B., Poberaj, I., Zalar, A., Kosec, L. & Spaić, S.(2006)Formation of functional groups on graphite during oxygen plasma treatment.Applied Surface Science, 253(4),1861-1865. https://doi.org/10.1016/j.apsusc.2006.03.028
  5. Dunn, B., Kamath, H.& Tarascon, J.M. (2011)Electrical Energy Storage for the Grid: A Battery of Choices.Science, 334(6058),928-935.Jones, C. &Sammann, E. (1989)The effect of low plasmas on carbon fibre surfaces.ONR-URI Composites Program Technikal Report. https://doi.org/10.1126/science.1212741
  6. Kimura, C., Yamamuro, Y.,Aoki,H. &Sugino, T.(2007)Improved field emission characteristics of carbon nanofibertreated with nitrogen plasma.Diamond and Related Materials16(4-7), 1383-1387. https://doi.org/10.1016/j.diamond.2006.11.084
  7. Kogelschatz, U. (2003)Dielectric-barrier discharges: Their history, discharge physics, and industrial applications.Plasma Chemistry and Plasma Processing, 23(1), 1-46. https://doi.org/10.1023/A:1022470901385
  8. Elersic, K I. J., Modic, M., Zaplotnik,R., Vesel, A.&Cvelbar, U. (2011)Modification of surface morphology of graphite by oxygen plasma treatment.Materials Technology, 45(3),233-239
  9. Nakahara, M. &Sanada, Y. (1993)Modification of pyrolytic graphite surface with plasma irradiation.Journal of Materials Science, 28(5),1327-1333. https://doi.org/10.1007/BF01191973
  10. Nakahara, M. &Sanada,Y. (1994)Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment.Journal of Materials Science, 29(12),3193-3199. https://doi.org/10.1007/BF00356662
  11. Paredes, J.I., Martinez-Alonso, A.& Tascón, J.M.D (2000)Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation.Carbon,38(8),1183-1197. https://doi.org/10.1016/S0008-6223(99)00241-9
  12. Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.L. & Brault, P.(2003)Stable C-atom displacements on HOPG surface under plasma low-energy argon-ion bombardment.Applied Physics A: Materials Science & Processing, 77(3),591-597. https://doi.org/10.1007/s00339-002-1538-x
  13. Schreiber, M., Harrer,M.,Whitehead,A.,Bucsich,H.,Dragschitz, M., Seifert, E. & Tymciw, P. (2012)Practical and commercial issues in the design and manufacture of vanadium flow batteries.Journal of Power Sources, 206(0),483-489. https://doi.org/10.1016/j.jpowsour.2010.12.032
  14. Shao, Y., Wang, X., Engelhard, M., Wang, C., Dai, S., Liu, J., Yang, Z. & Lin, Y. (2010)Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries.Journal of Power Sources, 195(13),4375-4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
  15. Shao, Y., S. Zhang, Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. & Lin, Y. (2010)Nitrogen-doped graphene and its electrochemical applications.Journal of Materials Chemistry, 20(35), 7491-7496. https://doi.org/10.1039/c0jm00782j
  16. Skyllas-Kazacos, M. (2009)Vanadium Redox-Flow Batteries.Encyclopedia of Electrochemical Power Sources,444-453. https://doi.org/10.1016/B978-044452745-5.00177-5
  17. Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S. & Saleem, M.(2011)Progress in Flow Battery Research and Development.Journal of The Electrochemical Society, 158(8), R55-R79. https://doi.org/10.1149/1.3599565
  18. Sun, B.& Skyllas-Kazacos, M. (1992)a. Chemical modification of graphite electrode materials for vanadium redox flow battery application -part II. Acid treatments.Electrochimica Acta, 37(13), 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D
  19. Sun, B. & Skyllas-Kazacos, M. (1992)bModification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment. Electrochimica Acta, 37(7),1253-1260. https://doi.org/10.1016/0013-4686(92)85064-R
  20. Sun, B. & Skyllas-Kazacos, M.(1991)Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution.Electrochimica Acta, 36(3-4),513-517. https://doi.org/10.1016/0013-4686(91)85135-T
  21. Wang, W.H. &Wang,X.D.(2007)Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta, 52(24),6755-6762. https://doi.org/10.1016/j.electacta.2007.04.121

Last update:

No citation recorded.

Last update:

No citation recorded.