Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment

Eva-Maria Hammer  -  NEXT ENERGY • EWE Research Centre for Energy Technology at Carl von Ossietzky University, , Germany
Benedikt Berger  -  NEXT ENERGY • EWE Research Centre for Energy Technology at Carl von Ossietzky University, , Germany
*Lidiya Komsiyska  -  NEXT ENERGY • EWE Research Centre for Energy Technology at Carl von Ossietzky University, , Germany
Published: 15 Feb 2014.
Open Access Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB). The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air) in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.
Keywords: air plasma, carbon felt electrode, graphite surface modification, vanadium-redox-flow battery

Article Metrics:

  1. Abbas, G., Papakonstantinou, P., Iyer,G.R.S., Kirkman,I.W. & Chen, L.I.(2007)Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Physical Review,B75(19), 195429. https://doi.org/10.1103/PhysRevB.75.195429
  2. Bismarck, A., Kumru, M.E.&Springer, J.(1999)Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties.Journal of Colloid and Interface Science, 210(1),60-72. https://doi.org/10.1006/jcis.1998.5912
  3. Brown, N.M.D., Cui, N. & McKinley, A. (1998)A study of the topography of a glassy carbon surface following low-power radio-frequency oxygenplasma treatment.Applied Surface Science, 133(3), 157-165. https://doi.org/10.1016/S0169-4332(98)00198-6
  4. Cvelbar, U., Markoli,B., Poberaj, I., Zalar, A., Kosec, L. & Spaić, S.(2006)Formation of functional groups on graphite during oxygen plasma treatment.Applied Surface Science, 253(4),1861-1865. https://doi.org/10.1016/j.apsusc.2006.03.028
  5. Dunn, B., Kamath, H.& Tarascon, J.M. (2011)Electrical Energy Storage for the Grid: A Battery of Choices.Science, 334(6058),928-935.Jones, C. &Sammann, E. (1989)The effect of low plasmas on carbon fibre surfaces.ONR-URI Composites Program Technikal Report. https://doi.org/10.1126/science.1212741
  6. Kimura, C., Yamamuro, Y.,Aoki,H. &Sugino, T.(2007)Improved field emission characteristics of carbon nanofibertreated with nitrogen plasma.Diamond and Related Materials16(4-7), 1383-1387. https://doi.org/10.1016/j.diamond.2006.11.084
  7. Kogelschatz, U. (2003)Dielectric-barrier discharges: Their history, discharge physics, and industrial applications.Plasma Chemistry and Plasma Processing, 23(1), 1-46. https://doi.org/10.1023/A:1022470901385
  8. Elersic, K I. J., Modic, M., Zaplotnik,R., Vesel, A.&Cvelbar, U. (2011)Modification of surface morphology of graphite by oxygen plasma treatment.Materials Technology, 45(3),233-239
  9. Nakahara, M. &Sanada, Y. (1993)Modification of pyrolytic graphite surface with plasma irradiation.Journal of Materials Science, 28(5),1327-1333. https://doi.org/10.1007/BF01191973
  10. Nakahara, M. &Sanada,Y. (1994)Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment.Journal of Materials Science, 29(12),3193-3199. https://doi.org/10.1007/BF00356662
  11. Paredes, J.I., Martinez-Alonso, A.& Tascón, J.M.D (2000)Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation.Carbon,38(8),1183-1197. https://doi.org/10.1016/S0008-6223(99)00241-9
  12. Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.L. & Brault, P.(2003)Stable C-atom displacements on HOPG surface under plasma low-energy argon-ion bombardment.Applied Physics A: Materials Science & Processing, 77(3),591-597. https://doi.org/10.1007/s00339-002-1538-x
  13. Schreiber, M., Harrer,M.,Whitehead,A.,Bucsich,H.,Dragschitz, M., Seifert, E. & Tymciw, P. (2012)Practical and commercial issues in the design and manufacture of vanadium flow batteries.Journal of Power Sources, 206(0),483-489. https://doi.org/10.1016/j.jpowsour.2010.12.032
  14. Shao, Y., Wang, X., Engelhard, M., Wang, C., Dai, S., Liu, J., Yang, Z. & Lin, Y. (2010)Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries.Journal of Power Sources, 195(13),4375-4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
  15. Shao, Y., S. Zhang, Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. & Lin, Y. (2010)Nitrogen-doped graphene and its electrochemical applications.Journal of Materials Chemistry, 20(35), 7491-7496. https://doi.org/10.1039/c0jm00782j
  16. Skyllas-Kazacos, M. (2009)Vanadium Redox-Flow Batteries.Encyclopedia of Electrochemical Power Sources,444-453. https://doi.org/10.1016/B978-044452745-5.00177-5
  17. Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S. & Saleem, M.(2011)Progress in Flow Battery Research and Development.Journal of The Electrochemical Society, 158(8), R55-R79. https://doi.org/10.1149/1.3599565
  18. Sun, B.& Skyllas-Kazacos, M. (1992)a. Chemical modification of graphite electrode materials for vanadium redox flow battery application -part II. Acid treatments.Electrochimica Acta, 37(13), 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D
  19. Sun, B. & Skyllas-Kazacos, M. (1992)bModification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment. Electrochimica Acta, 37(7),1253-1260. https://doi.org/10.1016/0013-4686(92)85064-R
  20. Sun, B. & Skyllas-Kazacos, M.(1991)Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution.Electrochimica Acta, 36(3-4),513-517. https://doi.org/10.1016/0013-4686(91)85135-T
  21. Wang, W.H. &Wang,X.D.(2007)Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta, 52(24),6755-6762. https://doi.org/10.1016/j.electacta.2007.04.121

Last update: 2021-05-06 04:03:14

  1. Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery

    Yue Li, Javier Parrondo, Shrihari Sankarasubramanian, Vijay Ramani. The Journal of Physical Chemistry C, 123 (11), 2019. doi: 10.1021/acs.jpcc.8b11874
  2. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries

    Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, M. Skyllas-Kazacos. Journal of Materials Chemistry A, 3 (33), 2015. doi: 10.1039/C5TA02613J
  3. Finite Heterogeneous Rate Constants for the Electrochemical Oxidation of VO2+ at Glassy Carbon Electrodes

    Tim Tichter, Jonathan Schneider, Christina Roth. Frontiers in Energy Research, 8 , 2020. doi: 10.3389/fenrg.2020.00155
  4. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Jan grosse Austing, Carolina Nunes Kirchner, Eva-Maria Hammer, Lidiya Komsiyska, Gunther Wittstock. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.09.177
  5. Design of a miniature flow cell forin situx-ray imaging of redox flow batteries

    Journal of Physics D: Applied Physics, 49 (43), 2016. doi: 10.1088/0022-3727/49/43/434002

Last update: 2021-05-06 04:03:14

  1. Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery

    Yue Li, Javier Parrondo, Shrihari Sankarasubramanian, Vijay Ramani. The Journal of Physical Chemistry C, 123 (11), 2019. doi: 10.1021/acs.jpcc.8b11874
  2. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries

    Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, M. Skyllas-Kazacos. Journal of Materials Chemistry A, 3 (33), 2015. doi: 10.1039/C5TA02613J
  3. Impact of surface carbonyl- A nd hydroxyl-group concentrations on electrode kinetics in an all-vanadium redox flow battery

    Li Y.. Journal of Physical Chemistry C, 2019. doi: 10.1021/acs.jpcc.8b11874
  4. Effects of surface pretreatment of glassy carbon on the electrochemical behavior of V(IV)/V(V) redox reaction

    Cao L.. Journal of the Electrochemical Society, 127 (7), 2016. doi: 10.1149/2.0261607jes
  5. Real-space simulation of cyclic voltammetry in carbon felt electrodes by combining micro X-ray CT data, digital simulation and convolutive modeling

    Tichter T.. Electrochimica Acta, 127 , 2020. doi: 10.1016/j.electacta.2020.136487
  6. Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes

    Tichter T.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.113843
  7. On the stability of bismuth in modified carbon felt electrodes for vanadium redox flow batteries: An in-operando X-ray computed tomography study

    Gebhard M.. Journal of Power Sources, 127 , 2020. doi: 10.1016/j.jpowsour.2020.228695
  8. Reprint of “Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes”

    Tichter T.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.114759
  9. Steady-State Measurements of Vanadium Redox-Flow Batteries to Study Particular Influences of Carbon Felt Properties

    Schweiss R.. ChemElectroChem, 4 (8), 2017. doi: 10.1002/celc.201700280
  10. Lithium Battery Transient Response as a Diagnostic Tool

    Denisov E.. Journal of Electronic Materials, 47 (8), 2018. doi: 10.1007/s11664-018-6346-y
  11. Key materials of vanadium flow batteries: Electrodes

    Fan X.. Redox Flow Batteries: Fundamentals and Applications, 2017. doi: 10.1201/9781315152684
  12. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries

    Schweiss R.. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.12.081
  13. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Jan grosse Austing, Carolina Nunes Kirchner, Eva-Maria Hammer, Lidiya Komsiyska, Gunther Wittstock. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.09.177
  14. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective

    Wang R.. Energy Storage Materials, 31 , 2020. doi: 10.1016/j.ensm.2020.06.012
  15. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Jervis R.. Journal of Physics D: Applied Physics, 49 (43), 2016. doi: 10.1088/0022-3727/49/43/434002
  16. What decides the kinetics of V2+/V3+ and VO2+/VO2+ redox reactions – Surface functional groups or roughness?

    Leuaa P.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.114590
  17. Finite Heterogeneous Rate Constants for the Electrochemical Oxidation of VO2+ at Glassy Carbon Electrodes

    Tichter T.. Frontiers in Energy Research, 8 , 2020. doi: 10.3389/fenrg.2020.00155
  18. The importance of wetting in carbon paper electrodes for vanadium redox reactions

    Goulet M.. Carbon, 101 , 2016. doi: 10.1016/j.carbon.2016.02.011