skip to main content

Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment

NEXT ENERGY • EWE Research Centre for Energy Technology at Carl von Ossietzky University, Carl-von-Ossietzky-Str. 15, 26129 Oldenburg, Germany

Published: 15 Feb 2014.
Editor(s):

Citation Format:
Abstract
In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB). The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air) in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.
Fulltext View|Download
Keywords: air plasma, carbon felt electrode, graphite surface modification, vanadium-redox-flow battery

Article Metrics:

  1. Abbas, G., Papakonstantinou, P., Iyer,G.R.S., Kirkman,I.W. & Chen, L.I.(2007)Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Physical Review,B75(19), 195429. https://doi.org/10.1103/PhysRevB.75.195429
  2. Bismarck, A., Kumru, M.E.&Springer, J.(1999)Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties.Journal of Colloid and Interface Science, 210(1),60-72. https://doi.org/10.1006/jcis.1998.5912
  3. Brown, N.M.D., Cui, N. & McKinley, A. (1998)A study of the topography of a glassy carbon surface following low-power radio-frequency oxygenplasma treatment.Applied Surface Science, 133(3), 157-165. https://doi.org/10.1016/S0169-4332(98)00198-6
  4. Cvelbar, U., Markoli,B., Poberaj, I., Zalar, A., Kosec, L. & Spaić, S.(2006)Formation of functional groups on graphite during oxygen plasma treatment.Applied Surface Science, 253(4),1861-1865. https://doi.org/10.1016/j.apsusc.2006.03.028
  5. Dunn, B., Kamath, H.& Tarascon, J.M. (2011)Electrical Energy Storage for the Grid: A Battery of Choices.Science, 334(6058),928-935.Jones, C. &Sammann, E. (1989)The effect of low plasmas on carbon fibre surfaces.ONR-URI Composites Program Technikal Report. https://doi.org/10.1126/science.1212741
  6. Kimura, C., Yamamuro, Y.,Aoki,H. &Sugino, T.(2007)Improved field emission characteristics of carbon nanofibertreated with nitrogen plasma.Diamond and Related Materials16(4-7), 1383-1387. https://doi.org/10.1016/j.diamond.2006.11.084
  7. Kogelschatz, U. (2003)Dielectric-barrier discharges: Their history, discharge physics, and industrial applications.Plasma Chemistry and Plasma Processing, 23(1), 1-46. https://doi.org/10.1023/A:1022470901385
  8. Elersic, K I. J., Modic, M., Zaplotnik,R., Vesel, A.&Cvelbar, U. (2011)Modification of surface morphology of graphite by oxygen plasma treatment.Materials Technology, 45(3),233-239
  9. Nakahara, M. &Sanada, Y. (1993)Modification of pyrolytic graphite surface with plasma irradiation.Journal of Materials Science, 28(5),1327-1333. https://doi.org/10.1007/BF01191973
  10. Nakahara, M. &Sanada,Y. (1994)Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment.Journal of Materials Science, 29(12),3193-3199. https://doi.org/10.1007/BF00356662
  11. Paredes, J.I., Martinez-Alonso, A.& Tascón, J.M.D (2000)Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation.Carbon,38(8),1183-1197. https://doi.org/10.1016/S0008-6223(99)00241-9
  12. Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.L. & Brault, P.(2003)Stable C-atom displacements on HOPG surface under plasma low-energy argon-ion bombardment.Applied Physics A: Materials Science & Processing, 77(3),591-597. https://doi.org/10.1007/s00339-002-1538-x
  13. Schreiber, M., Harrer,M.,Whitehead,A.,Bucsich,H.,Dragschitz, M., Seifert, E. & Tymciw, P. (2012)Practical and commercial issues in the design and manufacture of vanadium flow batteries.Journal of Power Sources, 206(0),483-489. https://doi.org/10.1016/j.jpowsour.2010.12.032
  14. Shao, Y., Wang, X., Engelhard, M., Wang, C., Dai, S., Liu, J., Yang, Z. & Lin, Y. (2010)Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries.Journal of Power Sources, 195(13),4375-4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
  15. Shao, Y., S. Zhang, Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. & Lin, Y. (2010)Nitrogen-doped graphene and its electrochemical applications.Journal of Materials Chemistry, 20(35), 7491-7496. https://doi.org/10.1039/c0jm00782j
  16. Skyllas-Kazacos, M. (2009)Vanadium Redox-Flow Batteries.Encyclopedia of Electrochemical Power Sources,444-453. https://doi.org/10.1016/B978-044452745-5.00177-5
  17. Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S. & Saleem, M.(2011)Progress in Flow Battery Research and Development.Journal of The Electrochemical Society, 158(8), R55-R79. https://doi.org/10.1149/1.3599565
  18. Sun, B.& Skyllas-Kazacos, M. (1992)a. Chemical modification of graphite electrode materials for vanadium redox flow battery application -part II. Acid treatments.Electrochimica Acta, 37(13), 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D
  19. Sun, B. & Skyllas-Kazacos, M. (1992)bModification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment. Electrochimica Acta, 37(7),1253-1260. https://doi.org/10.1016/0013-4686(92)85064-R
  20. Sun, B. & Skyllas-Kazacos, M.(1991)Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution.Electrochimica Acta, 36(3-4),513-517. https://doi.org/10.1016/0013-4686(91)85135-T
  21. Wang, W.H. &Wang,X.D.(2007)Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta, 52(24),6755-6762. https://doi.org/10.1016/j.electacta.2007.04.121

Last update:

  1. What decides the kinetics of V2+/V3+ and VO2+/VO2+ redox reactions – Surface functional groups or roughness?

    Pradipkumar Leuaa, Divya Priyadarshani, Anand Kumar Tripathi, Manoj Neergat. Journal of Electroanalytical Chemistry, 878 , 2020. doi: 10.1016/j.jelechem.2020.114590
  2. Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery

    Yue Li, Javier Parrondo, Shrihari Sankarasubramanian, Vijay Ramani. The Journal of Physical Chemistry C, 123 (11), 2019. doi: 10.1021/acs.jpcc.8b11874
  3. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries

    Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, M. Skyllas-Kazacos. Journal of Materials Chemistry A, 3 (33), 2015. doi: 10.1039/C5TA02613J
  4. Effects of Surface Pretreatment of Glassy Carbon on the Electrochemical Behavior of V(IV)/V(V) Redox Reaction

    Liuyue Cao, Maria Skyllas-Kazacos, Da-Wei Wang. Journal of The Electrochemical Society, 163 (7), 2016. doi: 10.1149/2.0261607jes
  5. Characteristics of Graphite Felt Electrodes Treated by Atmospheric Pressure Plasma Jets for an All-Vanadium Redox Flow Battery

    Tossaporn Jirabovornwisut, Bhupendra Singh, Apisada Chutimasakul, Jung-Hsien Chang, Jian-Zhang Chen, Amornchai Arpornwichanop, Yong-Song Chen. Materials, 14 (14), 2021. doi: 10.3390/ma14143847
  6. Graphene-Based Electrodes in a Vanadium Redox Flow Battery Produced by Rapid Low-Pressure Combined Gas Plasma Treatments

    Sebastiano Bellani, Leyla Najafi, Mirko Prato, Reinier Oropesa-Nuñez, Beatriz Martín-García, Luca Gagliani, Elisa Mantero, Luigi Marasco, Gabriele Bianca, Marilena I. Zappia, Cansunur Demirci, Silvia Olivotto, Giacomo Mariucci, Vittorio Pellegrini, Massimo Schiavetti, Francesco Bonaccorso. Chemistry of Materials, 33 (11), 2021. doi: 10.1021/acs.chemmater.1c00763
  7. On the stability of bismuth in modified carbon felt electrodes for vanadium redox flow batteries: An in-operando X-ray computed tomography study

    Marcus Gebhard, Tim Tichter, Jonathan Schneider, Jacob Mayer, André Hilger, Markus Osenberg, Mirko Rahn, Ingo Manke, Christina Roth. Journal of Power Sources, 478 , 2020. doi: 10.1016/j.jpowsour.2020.228695
  8. Tunable surface chemistry of carbon electrodes and the role of surface functionalities towards vanadium redox reactions

    Saleem Abbas, Sheeraz Mehboob, Hyun-Jin Shin, Syed Bilal Hasan Rizvi, Jaewon Kim, Dirk Henkensmeier, Heung Yong Ha. Applied Surface Science, 628 , 2023. doi: 10.1016/j.apsusc.2023.157331
  9. Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes

    Tim Tichter, Jonathan Schneider, Duc Nguyen Viet, Alvaro Diaz Duque, Christina Roth. Journal of Electroanalytical Chemistry, 859 , 2020. doi: 10.1016/j.jelechem.2020.113843
  10. The effect of plasma treated carbon felt on the performance of aqueous quinone‐based redox flow batteries

    Agnesia Permatasari, Jeong Woo Shin, Wonmi Lee, Jihwan An, Yongchai Kwon. International Journal of Energy Research, 45 (12), 2021. doi: 10.1002/er.6926
  11. Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments

    Paweł Jakóbczyk, Grzegorz Skowierzak, Iwona Kaczmarzyk, Małgorzata Nadolska, Anna Wcisło, Katarzyna Lota, Robert Bogdanowicz, Tadeusz Ossowski, Paweł Rostkowski, Grzegorz Lota, Jacek Ryl. Chemosphere, 304 , 2022. doi: 10.1016/j.chemosphere.2022.135381
  12. Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodes

    D. Ledwoch, L. Komsiyska, E-M. Hammer, K. Smith, P.R. Shearing, D.J.L. Brett, E. Kendrick. Electrochimica Acta, 401 , 2022. doi: 10.1016/j.electacta.2021.139481
  13. Steady-State Measurements of Vanadium Redox-Flow Batteries to Study Particular Influences of Carbon Felt Properties

    Ruediger Schweiss, Christian Meiser, Fu Wei Thomas Goh. ChemElectroChem, 4 (8), 2017. doi: 10.1002/celc.201700280
  14. Lithium Battery Transient Response as a Diagnostic Tool

    E. Denisov, R. Nigmatullin, Y. Evdokimov, G. Timergalina. Journal of Electronic Materials, 47 (8), 2018. doi: 10.1007/s11664-018-6346-y
  15. Finite Heterogeneous Rate Constants for the Electrochemical Oxidation of VO2+ at Glassy Carbon Electrodes

    Tim Tichter, Jonathan Schneider, Christina Roth. Frontiers in Energy Research, 8 , 2020. doi: 10.3389/fenrg.2020.00155
  16. Atmospheric Pressure Tornado Plasma Jet of Polydopamine Coating on Graphite Felt for Improving Electrochemical Performance in Vanadium Redox Flow Batteries

    Song-Yu Chen, Yu-Lin Kuo, Yao-Ming Wang, Wei-Mau Hsu, Tzu-Hsuan Chien, Chiu-Feng Lin, Cheng-Hsien Kuo, Akitoshi Okino, Tai-Chin Chiang. Catalysts, 11 (5), 2021. doi: 10.3390/catal11050627
  17. Electrochemical Evaluation of Different Graphite Felt Electrode Treatments in Full Vanadium Redox Flow Batteries

    Itziar Azpitarte, Unai Eletxigerra, Angela Barros, Estibaliz Aranzabe, Rosalía Cid. Batteries, 9 (1), 2023. doi: 10.3390/batteries9010039
  18. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Jan grosse Austing, Carolina Nunes Kirchner, Eva-Maria Hammer, Lidiya Komsiyska, Gunther Wittstock. Journal of Power Sources, 273 , 2015. doi: 10.1016/j.jpowsour.2014.09.177
  19. Design of a miniature flow cell forin situx-ray imaging of redox flow batteries

    Rhodri Jervis, Leon D Brown, Tobias P Neville, Jason Millichamp, Donal P Finegan, Thomas M M Heenan, Dan J L Brett, Paul R Shearing. Journal of Physics D: Applied Physics, 49 (43), 2016. doi: 10.1088/0022-3727/49/43/434002
  20. Unraveling the relevance of carbon felts surface modification during electrophoretic deposition of nanocarbons on their performance as electrodes for the VO2+/VO2+ redox couple

    Laura García-Alcalde, Zoraida González, Daniel Barreda, Victoria G. Rocha, Clara Blanco, Ricardo Santamaría. Applied Surface Science, 569 , 2021. doi: 10.1016/j.apsusc.2021.151095
  21. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective

    Rui Wang, Yinshi Li. Energy Storage Materials, 31 , 2020. doi: 10.1016/j.ensm.2020.06.012
  22. Electrochemical characterisation of macroporous electrodes: Recent advances and hidden pitfalls

    Tim Tichter, Aaron T. Marshall. Current Opinion in Electrochemistry, 34 , 2022. doi: 10.1016/j.coelec.2022.101027
  23. Defective Carbon for Next‐Generation Stationary Energy Storage Systems: Sodium‐Ion and Vanadium Flow Batteries

    Sophie McArdle, Felix Bauer, Simone Fiorini Granieri, Marius Ast, Fabio Di Fonzo, Aaron T. Marshall, Hannes Radinger. ChemElectroChem, 11 (4), 2024. doi: 10.1002/celc.202300512
  24. Electrochemical Aging and Characterization of Graphite-Polymer Based Composite Bipolar Plates for Vanadium Redox Flow Batteries

    Gaurav Gupta, Barbara Satola, Lidiya Komsiyska, Corinna Harms, Thorsten Hickmann, Alexander Dyck. Journal of The Electrochemical Society, 169 (8), 2022. doi: 10.1149/1945-7111/ac8240
  25. Impact of electrochemical cells configuration on a reliable assessment of active electrode materials for Vanadium Redox Flow Batteries

    Laura García-Alcalde, Zoraida González, Alejandro Concheso, Clara Blanco, Ricardo Santamaría. Electrochimica Acta, 432 , 2022. doi: 10.1016/j.electacta.2022.141225
  26. Reprint of "Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes"

    Tim Tichter, Jonathan Schneider, Duc Nguyen Viet, Alvaro Diaz Duque, Christina Roth. Journal of Electroanalytical Chemistry, 875 , 2020. doi: 10.1016/j.jelechem.2020.114759
  27. Steady‐State Measurements of Vanadium Redox‐Flow Batteries to Study Particular Influences of Carbon Felt Properties

    Ruediger Schweiss, Christian Meiser, Fu Wei Thomas Goh. ChemElectroChem, 4 (8), 2017. doi: 10.1002/celc.201700280
  28. The importance of wetting in carbon paper electrodes for vanadium redox reactions

    Marc-Antoni Goulet, Maria Skyllas-Kazacos, Erik Kjeang. Carbon, 101 , 2016. doi: 10.1016/j.carbon.2016.02.011
  29. Why electrode orientation and carbon felt heterogeneity can influence the performance of flow batteries

    Sophie McArdle, Aaron T. Marshall. Journal of Power Sources, 562 , 2023. doi: 10.1016/j.jpowsour.2023.232755

Last update: 2024-09-08 16:09:53

  1. Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery

    Yue Li, Javier Parrondo, Shrihari Sankarasubramanian, Vijay Ramani. The Journal of Physical Chemistry C, 123 (11), 2019. doi: 10.1021/acs.jpcc.8b11874
  2. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries

    Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, M. Skyllas-Kazacos. Journal of Materials Chemistry A, 3 (33), 2015. doi: 10.1039/C5TA02613J
  3. Impact of surface carbonyl- A nd hydroxyl-group concentrations on electrode kinetics in an all-vanadium redox flow battery

    Li Y.. Journal of Physical Chemistry C, 2019. doi: 10.1021/acs.jpcc.8b11874
  4. Effects of Surface Pretreatment of Glassy Carbon on the Electrochemical Behavior of V(IV)/V(V) Redox Reaction

    Liuyue Cao, Maria Skyllas-Kazacos, Da-Wei Wang. Journal of The Electrochemical Society, 163 (7), 2016. doi: 10.1149/2.0261607jes
  5. Real-space simulation of cyclic voltammetry in carbon felt electrodes by combining micro X-ray CT data, digital simulation and convolutive modeling

    Tichter T.. Electrochimica Acta, 127 , 2020. doi: 10.1016/j.electacta.2020.136487
  6. Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes

    Tichter T.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.113843
  7. On the stability of bismuth in modified carbon felt electrodes for vanadium redox flow batteries: An in-operando X-ray computed tomography study

    Marcus Gebhard, Tim Tichter, Jonathan Schneider, Jacob Mayer, André Hilger, Markus Osenberg, Mirko Rahn, Ingo Manke, Christina Roth. Journal of Power Sources, 478 , 2020. doi: 10.1016/j.jpowsour.2020.228695
  8. Reprint of “Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes”

    Tichter T.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.114759
  9. Steady-State Measurements of Vanadium Redox-Flow Batteries to Study Particular Influences of Carbon Felt Properties

    Ruediger Schweiss, Christian Meiser, Fu Wei Thomas Goh. ChemElectroChem, 4 (8), 2017. doi: 10.1002/celc.201700280
  10. Lithium Battery Transient Response as a Diagnostic Tool

    E. Denisov, R. Nigmatullin, Y. Evdokimov, G. Timergalina. Journal of Electronic Materials, 47 (8), 2018. doi: 10.1007/s11664-018-6346-y
  11. Key materials of vanadium flow batteries: Electrodes

    Fan X.. Redox Flow Batteries: Fundamentals and Applications, 2017. doi: 10.1201/9781315152684
  12. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries

    Schweiss R.. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.12.081
  13. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Jan grosse Austing, Carolina Nunes Kirchner, Eva-Maria Hammer, Lidiya Komsiyska, Gunther Wittstock. Journal of Power Sources, 273 , 2015. doi: 10.1016/j.jpowsour.2014.09.177
  14. Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective

    Rui Wang, Yinshi Li. Energy Storage Materials, 31 , 2020. doi: 10.1016/j.ensm.2020.06.012
  15. Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries

    Jervis R.. Journal of Physics D: Applied Physics, 49 (43), 2016. doi: 10.1088/0022-3727/49/43/434002
  16. What decides the kinetics of V2+/V3+ and VO2+/VO2+ redox reactions – Surface functional groups or roughness?

    Leuaa P.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.114590
  17. Finite Heterogeneous Rate Constants for the Electrochemical Oxidation of VO2+ at Glassy Carbon Electrodes

    Tichter T.. Frontiers in Energy Research, 8 , 2020. doi: 10.3389/fenrg.2020.00155
  18. The importance of wetting in carbon paper electrodes for vanadium redox reactions

    Marc-Antoni Goulet, Maria Skyllas-Kazacos, Erik Kjeang. Carbon, 101 , 2016. doi: 10.1016/j.carbon.2016.02.011