skip to main content

Design and Testing of 3D-Printed Stackable Plant-Microbial Fuel Cells for Field Applications

1School of Chemical, Biological. and Materials Engineering and Sciences, Mapua University, Manila, Philippines

2Center for Renewable Bioenergy Research, Mapua University, Manila, Philippines

Received: 23 Feb 2022; Revised: 10 Oct 2022; Accepted: 16 Jan 2023; Available online: 20 Feb 2023; Published: 15 Mar 2023.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The prevalence of non-renewable energy has always been a problem for the environment that needs a long-term solution. Plant-Microbial Fuel Cells (PMFCs) are promising bioelectrochemical systems that can utilize plant rhizodeposition to generate clean electricity on-site, without harming the plants, paving the way for simultaneous agriculture and power generation. However, one of the biggest hurdles in large-scale PMFC application is the diffused nature of power generation without a clear path to consolidate or amplify the small power of individual cells. In this study, stacking configurations of 3D-printed PMFCs are investigated to determine the amplification potential of bioelectricity. The PMFCs designed in this study are made of 3D-printed electrodes, printed from 1.75 mm Proto-pasta (ProtoPlant, USA) conductive PLA filament, and a terracotta membrane acting as the separator. Six cells were constructed with the electrodes designed to tightly fit with the ceramic separator when assembled. An agriculturally important plant (S. Melongena) was utilized as the model plant for testing purposes. Stacking of cells in series had resulted in severe voltage loss while stacking of cells in parallel preserved the voltage and current of the cells. Cumulative stacking verified the increasing voltage losses as more cells are connected in series, while voltage and current were generally supported well as more cells were connected in parallel. Combination stacks were also investigated, but while 2 sets of 3 cells in parallel stacked in series generated proportionately larger power and power density compared to individual cells, the drop in current density suggests that pure parallel stacks are still more attractive for scaling up, at least for the proposed stake design in this study. The results of this study indicated that the scale up of PMFC technology is possible in field applications to continuously generate electricity while growing edible plants.

Fulltext View|Download
Keywords: 3D-printing; stacking; fuel cells; renewable energy

Article Metrics:

  1. Aaron, D., Tang, Z., Papandrew, A.B., Zawodzinski, T.A. (2011). Polarization curve analysis of all-vanadium redox flow batteries. Journal of Applied Electrochemistry, 41(10). 1175-1182.
  2. Apollon, W., Luna-Maldonado, A. I., Kamaraj, S. K., Vidales-Contreras, J. A., Rodríguez-Fuentes, H., Gómez-Leyva, J. F., & Aranda-Ruíz, J. (2021). Progress and recent trends in photosynthetic assisted microbial fuel cells: A review. Biomass and Bioenergy, 148, 106028.
  3. Aulakh, M., Wassmann, R., Bueno, C., Kreuzwieser, J., Rennenberg, H. (2008). Characterization of Root Exudates at Different Growth Stages of Ten Rice (Oryza sativa L.) Cultivars. Plant Biology, 3(2), 139-148.
  4. Deeke, A., Sleutels, T. H. J. A., Hamelers, H. V. M., & Buisman, C. J. N. (2012). Capacitive bioanodes enable renewable energy storage in microbial fuel cells. Environmental Science and Technology, 46(6), 3554–3560.
  5. Gajda, I., Greenman, J., Ieropoulos, I. (2020). Microbial Fuel Cell stack performance enhancement through carbon veil anode modification with activated carbon powder. Applied Energy, 262, 114475,
  6. Greenman, J., & Ieropoulos, I. A. (2017). Allometric scaling of microbial fuel cells and stacks: The lifeform case for scale-up. Journal of Power Sources, 356, 365–370. 2017.04.033
  7. Gurung, A. & Oh, S.E. (2012). The Improvement of Power Output from Stacked Microbial Fuel Cells (MFCs), Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 34(17), 1569-1576,
  8. He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., Wang, Z. (2017). Advances in microbial fuel cells for wastewater treatment. Renewable and Sustainable Energy Reviews. 71, 388-403.
  9. Heijne, A. ter, Liu, D., Sulonen, M., Sleutels, T., & Fabregat-Santiago, F. (2018). Quantification of bio-anode capacitance in bioelectrochemical systems using Electrochemical Impedance Spectroscopy. Journal of Power Sources, 400, 533–538. 2018.08.003
  10. Huang, X., Duan, C., Duan, W., Sun, F., Cui, H., Zhang, S., & Chen, X. (2021). Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): A review. Journal of Cleaner Production, 301, 126951.
  11. Kim, B., & Chang, I. S. (2018). Elimination of voltage reversal in multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFCs) stacking system by resistor control. Bioresource Technology, 262, 338–341.
  12. Kuchi, S., Sarkar, O., Butti, S. K., Velvizhi, G., & Venkata Mohan, S. (2018). Stacking of microbial fuel cells with continuous mode operation for higher bioelectrogenic activity. Bioresource technology, 257, 210–216.
  13. Liu, H., Zhang, B., Liu, Y., Wang, Z., Hao, L. (2015) Continuous bioelectricity generation with simultaneous sulfide and organics removals in an anaerobic baffled stacking microbial fuel cell. International Journal of Hydrogen Energy, 40(25), 8128-8136,
  14. Lu, M., Qian, Y., Huang, L., Xie, X., Huang, W. (2015). Improving the Performance of Microbial Fuel Cells through Anode Manipulation. ChemPlusChem, 80(8), 1216-1225. 201500200
  15. Maurício, R., Dias, C. J., & Santana, F. (2006). Monitoring biofilm thickness using a non-destructive, on-line, electrical capacitance technique. Environmental Monitoring and Assessment, 119(1–3), 599–607.
  16. Maddalwar, S., Kumar Nayak, K., Kumar, M., & Singh, L. (2021). Plant microbial fuel cell: Opportunities, challenges, and prospects. Bioresource Technology, 341, 125772.
  17. Narayana Prasad, P., & Kalla, S. (2021). Plant-microbial fuel cells - A bibliometric analysis. Process Biochemistry, 111, 250–260.
  18. Nguyen, C. L., Tartakovsky, B., & Woodward, L. (2019). Harvesting Energy from Multiple Microbial Fuel Cells with a High-Conversion Efficiency Power Management System. ACS Omega, 4(21), 18978–18986.
  19. Nikhil, G. N., Krishna Chaitanya, D. N. S., Srikanth, S., Swamy, Y. v., & Venkata Mohan, S. (2018). Applied resistance for power generation and energy distribution in microbial fuel cells with rationale for maximum power point. Chemical Engineering Journal, 335, 267–274.
  20. Nitisoravut, R., & Regmi, R. (2017). Plant microbial fuel cells: A promising biosystems engineering. Renewable and Sustainable Energy Reviews, 76, 81–89. .03.064
  21. Oh, S. E., & Logan, B. E. (2007). Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 167(1), 11–17.
  22. Osorio de la Rosa, E., Vázquez Castillo, J., Carmona Campos, M., Barbosa Pool, G., Becerra Nuñez, G., Castillo Atoche, A., & Ortegón Aguilar, J. (2019). Plant Microbial Fuel Cells–Based Energy Harvester System for Self-powered IoT Applications. Sensors, 19(6), 1378.
  23. Pamintuan, K. R. S., Ancheta, A. J. G., & Robles, S. M. T. (2020). Stacking efficiency of terrestrial Plant-Microbial Fuel Cells growing Ocimum basilicum and Origanum vulgare. E3S Web of Conferences, 181, 1–5.
  24. Pamintuan, K. R. S., Bagumba, I. H. P., & Domingo, Z. D. G. (2020). Compartmentalization studies of a deep-design batch Microbial Fuel Cell assembly. Journal of Physics: Conference Series, 1457(1).
  25. Pamintuan, K. R. S., Clomera, J. A. A., Garcia, K. V., Ravara, G. R., & Salamat, E. J. G. (2018). Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes). IOP Conference Series: Earth and Environmental Science, 191(1).
  26. Pamintuan, K. R. S., Katipunan, A. M. C., Palaganas, P. A. O., & Caparanga, A. R. (2020). An analysis of the stacking potential and efficiency of plant-microbial fuel cells growing green beans (Vigna ungiculata ssp. sesquipedalis). International Journal of Renewable Energy Development, 9(3), 439–447. 2020.29898
  27. Pamintuan, K. R. S., Reyes, C. S. A., & Lat, D. K. O. (2020). Compartmentalization and polarization studies of a Plant-Microbial Fuel Cell assembly with Cynodon dactylon. E3S Web of Conferences, 181.
  28. Peng, X., Chen, S., Liu, L., Zheng, S., & Li, M. (2016). Modified stainless steel for high performance and stable anode in microbial fuel cells. Electrochimica Acta, 194, 246–252. j.electacta.2016.02.127
  29. Rocha, R. G., Ramos, D. L. O., de Faria, L. V., Germscheidt, R. L., dos Santos, D. P., Bonacin, J. A., Munoz, R. A. A., & Richter, E. M. (2022). Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling. Journal of Electroanalytical Chemistry, 116910.
  30. Selvasembian, R., Mal, J., Rani, R., Sinha, R., Agrahari, R., Joshua, I., Santhiagu, A., & Pradhan, N. (2021). Recent progress in microbial fuel cells for industrial effluent treatment and energy generation: Fundamentals to scale-up application and challenges. Bioresource Technology, 126462.
  31. Shaikh, R., Rizvi, A., Quraishi, M., Pandit, S., Mathuriya, A. S., Gupta, P. K., Singh, J., & Prasad, R. (2021). Bioelectricity production using plant-microbial fuel cell: Present state of art. South African Journal of Botany, 140, 393–408.
  32. Slate, A. J., Hickey, N. A., Butler, J. A., Wilson, D., Liauw, C. M., Banks, C. E., & Whitehead, K. A. (2021). Additive manufactured graphene-based electrodes exhibit beneficial performances in Pseudomonas aeruginosa microbial fuel cells. Journal of Power Sources, 499, 229938.
  33. Sindhuja, M., Sudha, V., Harinipriya, S., & Chhabra, M. (2019). Biofilm capacitance and mixed culture bacteria influence on performance of Microbial Fuel Cells-Electrochemical impedance studies. In Materials Today: Proceedings (Vol. 8). 2019.02.075
  34. Tetteh, F., Zhao, Q., Wei, L., Ding, J., Antwi, P., Koblah, F., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 110, 402–414. 05.016
  35. Ueoka, N., Sese, N., Sue, M., Kouzuma, A., & Watanabe, K. (2016). Sizes of Anode and Cathode Affect Electricity Generation in Rice Paddy-Field Microbial Fuel Cells. Journal of Sustainable Bioenergy Systems, 06(01), 10–15.
  36. Wetser, K., Dieleman, K., Buisman, C., & Strik, D. (2017). Electricity from wetlands: Tubular plant microbial fuels with silicone gas-diffusion biocathodes. Applied Energy, 185, 642–649.
  37. Winfield, J., Gajda, I., Greenman, J., & Ieropoulos, I. (2016). A review into the use of ceramics in microbial fuel cells. Bioresource Technology, 215, 296–303.
  38. You, J., Fan, H., Winfield, J., & Ieropoulo, I. A. (2020). Complete Microbial Fuel Cell Fabrication Using Additive Layer Manufacturing. Molecules 2020, Vol. 25, Page 3051, 25(13), 3051.
  39. You, J., Preen, R. J., Bull, L., Greenman, J., & Ieropoulos, I. (2017). 3D printed components of microbial fuel cells: Towards monolithic microbial fuel cell fabrication using additive layer manufacturing. Sustainable Energy Technologies and Assessments, 19, 94–101.
  40. Zain, S. M., Ching, N. L., Jusoh, S., & Yunus, S. Y. (2015). Different Types of Microbial Fuel Cell (MFC) Systems for Simultaneous Electricity Generation and Pollutant Removal. Jurnal Teknologi, 3, 13–19.

Last update:

No citation recorded.

Last update: 2023-11-29 07:58:00

No citation recorded.