skip to main content

Optimum Control of Grid-Connected Solar Power System Under Asymmetrical Voltage Drop

School of Electrical Engineering, International University, Vietnam National University, Ho Chi Minh City 700000, Viet Nam

Received: 8 Mar 2022; Revised: 13 May 2022; Accepted: 26 May 2022; Available online: 2 Jun 2022; Published: 4 Aug 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Solar power systems are now gradually dominating in providing clean, environmentally friendly energy and human health. In areas with a large share of solar power, grid connection control plays a key role in ensuring operational quality and stability, especially in the event of a grid failure. In case of asymmetrical voltage drop, the control system needs to maintain operation and create a function to assist in restoring the power grid. This study proposes a method to control the solar power system in the condition of asymmetric grid voltage drop based on the method of controlling symmetrical components. Controllers for each of the forward and inverse components are built to limit the effects of failures. The optimal control parameter calculation method is also proposed to improve the overall quality and minimize the undesired variation of the electromagnetic quantities. The simulation and experimental results are verified to evaluate the effectiveness of the grid-connected control method in converting DC power to three-phase power.
Fulltext View|Download
Keywords: Solar power; Grid connection control; Grid disturbance; Symmetrical component; Inverse sequence controller

Article Metrics:

  1. Alepuz, S., Busquets, S., Bordonau, J., Pontt, J., Silva, C., & Rodriguez, J. (2007). Fast on-line symmetrical components separation method for synchronization and control purposes in three phase distributed power generation systems. European Conference on Power Electronics and Applications, pp. 1-10. DOI: 10.1109/EPE.2007.4417343
  2. Almeida, P. M., Monteiro, K. M., Barbosa, P. G., Duarte J. L., & Ribeiro, P. F. (2016). Improvement of PV grid-tied inverters operation under asymmetrical fault conditions, Solar Energy, 133, 363-371. https://doi.org/10.1016/j.solener.2016.04.015
  3. Arrillaga, J., Bollen, M. H. J., & Watson, N. R. (2000). Power quality following deregulation. Proceedings of the IEEE, 88, 246-261. DOI: 10.1109/5.824002
  4. Banu, I. & Istrate, M. (2014). Study on Three-Phase Photovoltaic Systems under Grid Faults. International Conference and Exposition on Electrical and Power Engineering (EPE). Doi: 10.1109/ICEPE.2014.6970086
  5. Camacho, A., Castilla, M., Miret, J., Vasquez, J. C. and Alarcon-Gallo, E. (2013). Flexible Voltage Support Control for Three-Phase Distributed Generation Inverters Under Grid Fault. IEEE Transactions on Industrial Electronics, 60(4), 1429-1441. doi: 10.1109/TIE.2012.2185016
  6. Castilla, M., Miret, J., Sosa, J. L., Matas, J. & Vicuña, L. G. d. (2010). Grid-Fault Control Scheme for Three-Phase Photovoltaic Inverters With Adjustable Power Quality Characteristics. IEEE Transactions on Power Electronics, 25(12), 2930-2940. doi: 10.1109/TPEL.2010.2070081
  7. Chen, M., Afridi, K. K. & Perreault, D. J. (2015). A Multilevel Energy Buffer and Voltage Modulator for Grid-Interfaced Microinverters," in IEEE Transactions on Power Electronics, 30(3), 1203-1219. doi: 10.1109/TPEL.2014.2320965
  8. Coppola, M., Napoli, F. Di, Guerriero, P., Iannuzzi, D., Daliento, S. & Pizzo, A. D. (2016). An FPGA-Based Advanced Control Strategy of a Grid­Tied PV CHB Inverter. IEEE Transactions on Power Electronics. 31(1), 806-816. doi: 10.1109/TPEL.2015.2405416
  9. Ding, G., Gao, F., Tian, H. & Ma, C. et al. (2016). Adaptive DC-Link Voltage Control of Two-Stage Photovoltaic Inverter During Low Voltage Ride-Through Operation. IEEE Transactions on Power Electronics, 31(6), 4182-4194. doi: 10.1109/TPEL.2015.2469603
  10. Dousoky, G. M., Ahmed, E. M. & Shoyama, M. (2013). MPPT schemes for single-stage three-phase grid-connected photovoltaic voltage-source inverters. IEEE International Conference on Industrial Technology (ICIT). 600-605, doi: 10.1109/ICIT.2013.6505739
  11. Erlich, I., Winter, W., & Dittrich, A. (2006). Advanced grid requirements for the integration of wind turbines into the German transmission system. IEEE Power Engineering Society General Meeting, 1-7.DOI: 10.1109/PES.2006.1709340
  12. Ferre, A. J., Bellmunt, O. G., Green, T. C., & Sanchez, D. E. S. (2011). Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Trans. on Power Electronics, 26(12), 3744-3753. DOI: 10.1109/TPEL.2011.2167761
  13. Filho, R. M. S., Seixas, P. F., Cortizo, P. C., Torres, L. A. B., & Souza, A. F. (2008). Comparison of Three Single-Phase PLL Algorithms for UPS Applications, IEEE Transactions on Industrial Electronics , 55, 2923-2932.DOI: 10.1109/TIE.2008.924205
  14. Gagrica, O., Nguyen, P. H., Kling, W. L. & Uhl, T. (2015). Microinverter Curtailment Strategy for Increasing Photovoltaic Penetration in Low-Voltage Networks. IEEE Transactions on Sustainable Energy, 6(2), 369-379. doi: 10.1109/TSTE.2014.2379918
  15. Hajizadeh, A., & Golkar, M. A. (2011). Control of photovoltaic power generation system during unbalanced grid voltage sag conditions. 21st International Conference on Electricity Distribution, Paper no. 0615, Frankfurt
  16. Hunter, G., Riedemann, J., & Andrade, I., et al. (2019). Power control of a grid-connected PV system during asymmetrical voltage faults. Electr Eng, 101, 239–250. https://doi.org/10.1007/s00202-019-00769-x
  17. Kaura, V., & Blasko, V. (1997). Operation of a phase locked loop system under distorted utility conditions, IEEE Transactions on Industry Applications, 33, 58-63. DOI: 10.1109/28.567077
  18. Kim, Y., Ji, Y., Kim, J., Jung, Y. & Won, C. (2013). A New Control Strategy for Improving Weighted Efficiency in Photovoltaic AC Module-Type Interleaved Flyback Inverters. IEEE Transactions on Power Electronics, 28(6), 2688-2699. doi: 10.1109/TPEL.2012.2226753
  19. Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306. DOI: 10.1109/TIA.2005.853371
  20. Kyritsis, A. C., Tatakis, E. C. & Papanikolaou, N. P. (2008). Optimum Design of the Current-Source Flyback Inverter for Decentralized Grid-Connected Photovoltaic Systems. IEEE Transactions on Energy Conversion, 23(1), 281-293. doi: 10.1109/TEC.2007.895854
  21. Li, H., Xu, Y., Adhikari, S., Rizy, D. T., Li, F. & Irminger, P. (2012). Real and reactive power control of a three-phase single-stage PV system and PV voltage stability. IEEE Power and Energy Society General Meeting. 1-8. doi: 10.1109/PESGM.2012.6343965
  22. Lin, X., Han, Y., Yang, P., Wang, C. & Xiong, J. (2018). Low-Voltage Ride-Through Techniques for Two-Stage Photovoltaic System under Unbalanced Grid Voltage Sag Conditions. IEEE 4th Southern Power Electronics Conference (SPEC). 1-8. doi: 10.1109/SPEC.2018.8636016
  23. Lodh, T. & Agarwal, V. (2016). Single stage multi-port Flyback type solar PV module integrated micro-inverter with battery backup. IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 1-6, doi: 10.1109/PEDES.2016.7914430
  24. Meneses, D., García, O., Alou, P., Oliver, J. A. & Cobos, J. A. (2015). Grid-Connected Forward Microinverter With Primary-Parallel Secondary-Series Transformer. IEEE Transactions on Power Electronics, 30(9), 4819-4830. doi: 10.1109/TPEL.2014.2365760
  25. Miret, J., Castilla, M., Camacho, A., Vicuña, L. G. d. & Matas, J. (2012). Control Scheme for Photovoltaic Three-Phase Inverters to Minimize Peak Currents During Unbalanced Grid-Voltage Sags. IEEE Transactions on Power Electronics. 27(10), 4262-4271. doi: 10.1109/TPEL.2012.2191306
  26. Moghadasi, A., Sargolzaei, A., Moghaddami, M., Sarwat, A. I. & Yen, K. (2017). Active and reactive power control method for three-phase PV module-integrated converter based on a single-stage inverter. IEEE Applied Power Electronics Conference and Exposition (APEC). 1357-1362, doi: 10.1109/APEC.2017.7930873
  27. Mohanty, E., Swain, R., Pany, S. S., Sahoo, S., Behera, S. S. & Panigrahi, B. K. (2019) Detection of Symmetrical and Unsymmetrical Fault in a PV Connected Power System. 3rd International Conference on Computing Methodologies and Communication (ICCMC), 251-254. doi: 10.1109/ICCMC.2019.8819661
  28. Nanakos, A. C., Tatakis, E. C. & Papanikolaou, N. P. (2012). A Weighted-Efficiency-Oriented Design Methodology of Flyback Inverter for AC Photovoltaic Modules. IEEE Transactions on Power Electronics, 27(7), 3221-3233. doi: 10.1109/TPEL.2011.2182211
  29. Omar, M.A. and Mahmoud, M.M. (2021). Improvement Approach for Matching PV-array and Inverter of Grid Connected PV Systems Verified by a Case Study. International Journal of Renewable Energy Development, 10(4), 687-697. https://doi.org/10.14710/ijred.2021.3608
  30. Prakash, S. L., Arutchelvi, M. & Sharon, S. S. (2015). Simulation and performance analysis of MPPT for single stage PV grid connected system. IEEE 9th International Conference on Intelligent Systems and Control (ISCO), 1-6, doi: 10.1109/ISCO.2015.7282391
  31. Premkumar, M., Karthick, K and Sowmya, R. (2018a). A Review on Solar PV Based Grid Connected Microinverter Control Schemes and Topologies. Int. Journal of Renewable Energy Development, 7(2), 171-182. https://doi.org/10.14710/ijred.7.2.171-182
  32. Premkumar, M., Sumithira, R., & Sowmya, R. (2018b). Modelling and Implementation of Cascaded Multilevel Inverter as Solar PV Based Microinverter Using FPGA. International Journal of Intelligent Engineering and Systems. 11, 18-27.doi: 10.22266/ijies2018.0430.03
  33. Saccomando, G., & Svensson, J. (2001). Transient operation of grid-connected voltage source converter under unbalanced voltage conditions. IEEE Industry Applications Conference, 36th IAS Annual Meeting, 2419-2424. DOI: 10.1109/IAS.2001.955960
  34. Sahu, P. K., Shaw, P. & Maity, S. 2015). Modeling and control of grid-connected DC/AC converters for single-phase micro-inverter application," Annual IEEE India Conference (INDICON), 1-6, doi: 10.1109/INDICON.2015.7443537
  35. Shao, R., Wei, R. & Chang, L. (2014). A multi-stage MPPT algorithm for PV systems based on golden section search method. IEEE Applied Power Electronics Conference and Exposition (APEC). 676-683. doi: 10.1109/APEC.2014.6803381
  36. Sosa, J. L., Castilla, M., Miret, J., Matas, J. & Al-Turki, Y. A. (2016). Control Strategy to Maximize the Power Capability of PV Three-Phase Inverters During Voltage Sags. IEEE Transactions on Power Electronics, 31(4), 3314-3323. doi: 10.1109/TPEL.2015.2451674
  37. Tekpeti, B., Kang, X., Kheshti, M. (2017). Particular PV grid-connected system under symmetrical and asymmetrical faults analysis. IEEE Electrical Power and Energy Conference (EPEC). Doi: 10.1109/EPEC.2017.8286146
  38. Vicuna, L., Hoz, J., Miret, J., Camacho, A. & Castilla, M. (2015). Reactive current injection protocol for low-power rating distributed generation sources under voltage sags. IET Power Electronics. 8. Doi: 10.1049/iet-pel.2014.0593
  39. Yang, Y., Blaabjerg, F., & Wang, H.. (2014). Low voltage ride-through of single-phase transformerless photovoltaic inverters. IEEE Transactions on Industry Applications, 50(3), 1942 - 1952. DOI: 10.1109/TIA.2013.228296
  40. Yashi, S., Ikhlaq, H., Bhim, S., & Sukumar, M. (2017). Single-Phase Solar Grid Interfaced System with Active Filtering Using ALCF Based Control Scheme. IET Generation, Transmission and Distribution. 11(8). Doi: 10.1049/iet-gtd.2016.1392
  41. Wang, X. B., Yang, Z. X., Fan, B. & Xu, W. (2015). Control Strategy of Three-Phase Photovoltaic Inverter under Low-Voltage Ride-Through Condition. Mathematical Problems in Engineering. 1, 1-23. Doi: 10.1155/2015/790584
  42. Zapata, J. W., Kouro, S., Aguirre, M. & Meynard, T. (2015). Model predictive control of interleaved dc-dc stage for photovoltaic microconverters. 41st Annual Conference of the IEEE Industrial Electronics Society. 4311-4316. doi: 10.1109/IECON.2015.7392771
  43. Zhang, J., Huang, X., Wu, X. & Qian, Z. (2010). A High Efficiency Flyback Converter With New Active Clamp Technique. IEEE Transactions on Power Electronics, 25(7), 1775-1785. doi: 10.1109/TPEL.2010.2042302
  44. Zhu, G., Ruan, X., Zhang, L. & Wang, X. (2015). On the Reduction of Second Harmonic Current and Improvement of Dynamic Response for Two-Stage Single-Phase Inverter. IEEE Transactions on Power Electronics, 30(2), 1028-1041. doi: 10.1109/TPEL.2014.2307092

Last update:

  1. New Energy Optimization Method Based on Multiple Information Fusion and Visualization

    Yichi Liu, Fangquan Wu, Yuan Ji, Junhan Hu. 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS), 2024. doi: 10.1109/ICICACS60521.2024.10498432

Last update: 2024-11-15 13:15:16

No citation recorded.