skip to main content

Potency of Solar Energy Applications in Indonesia

Chemical Engineering Department, Faculty of Engineering, Diponegoro University, Indonesia

Published: 1 Jul 2012.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2012 International Journal of Renewable Energy Development
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Currently, 80% of conventional energy is used to fulfill general public's needs andindustries. The depletion of oil and gas reserves and rapid growth in conventional energyconsumption have continuously forced us to discover renewable energy sources, like solar, wind,biomass, and hydropower, to support economic development in the future. Solar energy travels at aspeed of 186,000 miles per second. Only a small part of the radiant energy that the sun emits intospace ever reaches the Earth, but that is more than enough to supply all our energy demand.Indonesia is a tropical country and located in the equator line, so it has an abundant potential ofsolar energy. Most of Indonesian area get enough intensity of solar radiation with the average dailyradiation around 4 kWh/m2. Basically, the solar systems use solar collectors and concentrators forcollecting, storing, and using solar radiation to be applied for the benefit of domestics, commercials,and industrials. Common applications for solar thermal energy used in industry are the SWHs, solardryers, space heating, cooling systems and water desalination.
Fulltext View|Download

Article Metrics:

  1. Hasan, MH, Mahlia TMI, Nur H, (2012) A review on energy scenario and sustainable energy in Indonesia, Renewable and Sustainable Energy Reviews16:2316-2328 https://doi.org/10.1016/j.rser.2011.12.007
  2. Mekhilefa S, Saidurb R, Safari A, (2011) A review on solar energy use in industries, Renewable and Sustainable Energy Reviews15:1777-1790 https://doi.org/10.1016/j.rser.2010.12.018
  3. Handbook of energy and economic statistic ofIndonesia(2010) Jakarta, Indonesia: Ministry of Energy and Mineral Resources;
  4. Rumbayan M, Abudureyimu A, Nagasaka K,(2012) Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system 16:1437-1449
  5. https://doi.org/10.1016/j.rser.2011.11.024
  6. Setiawan D, Mufida SF, Suchesdian NZ,(2011) Potential of Renewable Energy : Solar, Water, and Wind in Indonesia as a Alternative Energy on Climate Change Mitigation, Solo: International Seminar on Climate Change Environment Insight for Climate Change Mitigation
  7. U.S. Department of Commerce International Trade Administration (2011) Renewable Energy Market Assessment Report: Indonesia
  8. Abdullah K,(2003) Biomass energy potential and utilization in Indonesia. Bogor:Indonesian Renewable Energy Society (IRES), Bogor Agriculture Institute
  9. Indonesia energy outlook & statistic (2006)Depok, Indonesia: Energy Reviewer, University of Indonesia
  10. Siswiyanti, Yayuk, and Jahi J, (2006) Mengembangkan Kapasitas Masyarakat Pedesaan dalam Berswasembada Energi Melalui Pendidikan: Pengembangan Energi Hijau (Green Energy)Sebagai Energi Alternatif, J.Penyuluhan, Vol. 2 no. 2. Bogor: Insitut Pertanian Bogor. https://doi.org/10.25015/penyuluhan.v2i2.2133
  11. Promotion of renewable energy, energy efficient and greenhouse gas abatement. Jakarta, Indonesia(2003)
  12. Seale, Eric. (2003) Solar Cell, http://encyclobeamia.solarbotics.net/articles/solar_cell.html
  13. Schnitzer H, Christoph B, Gwehenberger G, (2007)Minimizing greenhouse gas emissions through the application of solar thermal energy in industrial processes. Approaching zero emissions. Journal of Cleaner Production, 15:1271-86. https://doi.org/10.1016/j.jclepro.2006.07.023
  14. Soteris K, (2004) Solar thermal collectors and applications. Progress in Energy and Combustion Science30(3):231-95. https://doi.org/10.1016/j.pecs.2004.02.001
  15. Kalogirou S, (2003)The potential of solar industrial process heat applications. Applied Energy76(4):337-61. https://doi.org/10.1016/S0306-2619(02)00176-9
  16. Sweet ML, McLeskey JT, (2012), Numerical simulation of underground Seasonal Solar Thermal Energy Storage (SSTES) for a single family dwelling using TRNSYS, Solar Energy 86:289-300 https://doi.org/10.1016/j.solener.2011.10.002
  17. KellyNA,GibsonTL,(2011), Increasing the solar photovoltaic energy capture on sunny and cloudy days, Solar Energy 85 : 111-125
  18. https://doi.org/10.1016/j.solener.2010.10.015
  19. Chen Y, Athienitis AK,Galal K, (2010), Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept, Solar Energy 84:1892-1907 https://doi.org/10.1016/j.solener.2010.06.013
  20. Mawire A., McPherson M, van den Heetkamp RR, (2008), Simulated energy and exergy analyses of the charging of an oil -pebble bed thermal energy storage system for a solar cooker, Solar EnergyMaterials&SolarCells92:1668-1676 https://doi.org/10.1016/j.solmat.2008.07.019
  21. Jesus Chavez-Galan, Rafael Almanza, 2007, Solar filters based on iron oxides used as efficient windows for energy savings, Solar Energy 81 (2007) 13-19 https://doi.org/10.1016/j.solener.2006.06.009
  22. Rong Wanga, , Zengliang Guob, Guangpu Wang, 2006, Low-energy proton irradiation effects on GaAs/Ge solar cells, Solar Energy Materials & Solar Cells 90 : 1052-1057 https://doi.org/10.1016/j.solmat.2005.05.018
  23. Zdanowicz TZ, Rodziewicz T, Zabkowska-Waclawek M, (2005), Theoretical analysis of the optimum energy band gap of semiconductors for fabrication of solar cells for applications in higher latitudes locations, Solar Energy Materials & Solar Cells 87:757-769 https://doi.org/10.1016/j.solmat.2004.07.049
  24. Crawford RH, Treloar GJ, (2004), Net energy analysis of solar and conventional domestic hot water systems in Melbourne, Australia, Solar Energy 76:159-163 https://doi.org/10.1016/j.solener.2003.07.030
  25. Govind K, Shireesh K, Santanu B, (2008),Design of solar thermal systems utilizing pressurized hot water storage for industrial applications. Solar Energy82:686-99. https://doi.org/10.1016/j.solener.2008.02.011
  26. SchnitzerH, Christoph B, Gwehenberger G, (2007)Minimizing greenhouse gas emissions through the application of solar thermal energy in industrial processes. Approachingzero emissions. Journal of Cleaner Production15:1271-86. https://doi.org/10.1016/j.jclepro.2006.07.023
  27. Ekechukwu OV, Norton B,(1999) Review of solar-energy drying systems II: an overview of solar drying technology. Energy Conversion and Management40:615-55. https://doi.org/10.1016/S0196-8904(98)00093-4
  28. Li Z, Guo-Qiang Z, Dong-Mei L, Jin Z, Li-Juan L, Li-Xin L, (2007), Application and development of solar energy in building industry and its prospects in China. Energy Policy 35:4121-7. https://doi.org/10.1016/j.enpol.2007.02.006

Last update:

No citation recorded.

Last update:

No citation recorded.