skip to main content

Techno-Economic and Environmental Feasibility Study of a Hybrid Photovoltaic Electrification System in Back-up Mode : A Case Report

1Laboratory of Physics Radiation (LPR), Faculty of Science and Technology (FAST), University of Abomey-Calavi, 01 B.P.526, Cotonou, Benin

2Centre R&D de Solar and Electrical Energies Power Engineers Group (SEEPEG), Godomey Gare, Abomey-Calavi, 03 B.P. 273, Cotonou, Benin

3Thermics and Energy Laboratory of Nantes, 44300 rue Christian Pauc, 44300 Nantes, France

4 IRITESE, Benin Center of Research and Innovation (CBRSI), Benin

View all affiliations
Received: 24 May 2022; Revised: 25 Dec 2022; Accepted: 28 Jan 2023; Available online: 20 Feb 2023; Published: 15 Mar 2023.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

In developing countries, institutions that have to operate continuously during daylight hours consume relatively large amounts of electrical energy for lighting and air conditioning, leading to high bills. Untimely power cuts lead to a fluctuation in the voltage delivered by the conventional network, which induces the malfunctioning of electrical equipment and the discontinuity of judicial work. The use of photovoltaic solar energy makes it possible, on the one hand, to ensure continuity of service in the event of damage, and on the other hand to stem greenhouse gas emissions through the sustainable nature of this energy.  Solar installations also make it possible to maintain the permanent power supply in the event of instability of the electrical network and to correct the voltage variations undergone by the energy equipment. Thus, this  (case) study  is based on the energy balances evaluated on the buildings of the jurisdiction of the city of Kandi (Benin) to propose effective solutions of electrification according to six (6) technical scenarii. Each component of the back up system has been sized considering technical requirements and an economic and environmental study has been carried out. The results indicate that the integrated scenario 6 of a "back-up" system with a solar fraction of up to 37% (49.5 kWc) seems to be the most suitable conf iguration for the current needs of the Kandi jurisdiction due to the shortest time to return on investment (5.1 years) and the maximum annual savings generated (33,674 USD). The environmental impact study has made it possible to determine the CO2  emissions avoided as well as the contribution of Carbon credits that this jurisdiction would reap has been evaluated at 115.8 tCO2  equivalent, or 10.6 hectares of forest carbon preserved over the life of the project. This configuration is therefore strongly recommended for a sustainable energy mix in the jurisdictions of Benin as well as for administrative or similar sites where electricity consumption is maximum during the day.

Fulltext View|Download

Article Metrics:

  1. Aboagye, B., Gyamfi, S., Puoza, J.C. and Obeng, M. (2020). Techno- economic Feasibility Analysis of Solar Photovoltaic Systems for Single Households in Peri-urban Areas Kumasi, Ghana. International Journal of Sustainable Energy Development. 8(1),392-404. https://doi.org/10.20533/ijsed.2046.3707.2020.0047
  2. Al Abri, A.; Al Kaaf, A.; Allouyahi, M.; Al Wahaibi, A.; Ahshan, R.; Al Abri, R.S.; Al Abri, A. (2023). Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman. Energies, 16, 288,1-23. https://doi.org/10.3390/en16010288
  3. Ali, F., Ahmar, M., Jiang, Y., AlAhmad, M., (2021). A techno-economic assessment of hybrid energy system in rural Pakistan. Energy, 215(15), 119103. https://doi.org/10.1016/j.energy.2020.119103
  4. Al-Shamani, A.N., Othman, M.Y.H., Mat, S., Ruslan, M. Abed, A. M. and Sopian, K. (2015). Design & Sizing of Stand-alone Solar Power Systems A house Iraq. Conference: Recent Advances in Renewable Energy Sources. 145-150. https://www.uomus.edu.iq/lecture/222
  5. Amara. K. (2015). Contribution à l’étude de conception d’une centrale photovoltaïque de puissance (1MW) interconnectée au réseau de distribution électrique moyenne tension. Master's thesis, University of Tizi-Ouzou. https://www.ummto.dz/dspace/handle/ummto/437
  6. Amoussou, I. (2018). Dimensionnement technico-économique d'une centrale de production d'énergie solaire photovoltaïque raccordée au Réseau : application à la commune de Kandi. Mémoire de fin d'études pour l'obtention du diplôme d'ingénieur d'études, Ecole Polytechnique d'Abomey-Calavi, Université d'Abomey-Calavi. 106p. https://koha.uac.bj/cgi-bin/koha/opacdetail.pl?biblionumber=61367&shelfbrowse_itemnumber=74278
  7. Amupolo, A., Nambundunga, S., Chowdhury, D.S.P. and Grün G. (2022). Techno-Economic Feasibility of Off-Grid Renewable Energy Electrification Schemes: A Case Study of an Informal Settlement in Namibia. Energies, 15, 4235, 1-32, https://doi.org/10.3390/en15124235
  8. Arif, S., Taweekun, J., Ali, HM., and Theppaya T. (2021). Techno Economic Evaluation and Feasibility Analysis of a Hybrid Net Zero Energy Building in Pakistan: A Case Study of Hospital. Front. Energy Res. 9:668908, 1-18, https://doi.org/10.3389/fenrg.2021.668908
  9. Benelkadi, A.O., Kaabeche, A. and Bakelli, Y. (2018). Etude de faisabilité technico-économique des centrales photovoltaïques en Algérie. Revue des Energies Renouvelables. 21(2), 181-198. https://www.asjp.cerist.dz/en/downArticle/401/21/2/121771
  10. Bermeo, I., Matute, L., Barragán-Escandón, E., Serrano-Guerrero, X., Zalamea-León E. (2021). Technical and economic feasibility study of a solar plant on a commercial surface in Azogues, Ecuador. 19th International Conference on Renewable Energies and Power Quality (ICREPQ'21) Almeria (Spain), 28th to 30th July 2021. https://doi.org/10.24084/repqj19.250
  11. Bourahla, N.A., Benghanem, M., Doumbia, M., Bouzeboudja H. (2019). The economic feasibility analysis of generated photovoltaic energy in the USTO campus. Przegląd elektrotechniczny. 95(5), 147-152, https://doi.org/10.15199/48.2019.05.35
  12. Dagtekin, M., Kaya, D., Öztürk H.H., and Kiliç, F.C. (2014). A study of techno-economic feasibility analysis of solar photovoltaic (PV) power generation in the province of Adana in Turkey. Energy exploration & exploitation. 32(4), 719-735. https://doi.org/10.1260/0144-5987.32.4.719
  13. Doudou, B.I. (2016). Etude de faisabilité d'installations solaires photovoltaïques pour les stations-service Total Niger. Mémoire pour l'obtention du diplôme de master en génie de l'eau et de l'environnement. Université 2ie, Burkina Faso. 61p. http://documentation.2ieedu.org/cdi2ie/opac_css/doc_num.php?explnum_id=2066
  14. Fahmi, M.I., Rajkumar, R., Wong, Y.W., Chong, L.W., Arelhi, R., and Isa, D. (2016) the Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas. Int. Journal of Renewable Energy Development, 5(3), 249-257. https//doi.org/10.14710/ijred.5.3.249-257
  15. Gopinath, A., Kalyankumar, B., Al Quri, K. (2022). Techno-Economic Feasibility Analysis of Solar PVWind Grid-connected Hybrid Energy systems for Electrification in Sultanate of Oman. IOP Conf. Series: Earth and Environmental Science, Sci. 1055 012004, 1-12, https://doi.org/10.1088/1755-1315/1055/1/012004
  16. Guno, C. S., Agaton, C. B., Villanueva, R. O., & Villanueva, R. O. (2021). Optimal Investment Strategy for Solar PV Integration in Residential Buildings: A Case Study in the Philippines. International Journal of Renewable Energy Development, 10(1), 79-89. https://doi.org/10.14710/ijred.2021.32657
  17. Hanen, D., KHediri, J., Gori, M., Gregori, L., Francesco B. (2018). Feasibility Study of Grid Connected Photovoltaic Power Plant In the Southern of Tunisia. International Conference on Green Energy & Environmental Engineering (GEEE-2018). Proceedings of Engineering and Technology – PET. 37, 99-109. https://www.researchgate.net/publication/326294685
  18. Hassanea, A.I., Didaneb, D.H., Tahirc, A.M., Hauglustained, J.M., Manshoorb, B., Mohideen M. F., Batchab, Tambae J.G., and Mouangue, R.M. (2022). Techno-economic feasibility of a remote PV mini-grid electrification system for five localities in Chad. International journal of sustainable engineering, 15(1), 177–191 https://doi.org/10.1080/19397038.2022.2101707
  19. Hussein KJ, Jasim. MM. (2019). Economic and Environmental Feasibility of Constructing a Grid-Connected Sun-Tracking PV Power Plant in Iraq. International journal of renewable energy research. 9(2), 997-1004 https://doi.org/10.20508/ijrer.v9i2.9082.g7668
  20. Iakovleva, E., Guerra, D., Tcvetkov, P. and Shklyarskiy, Y. (2022). Technical and Economic Analysis of Modernization of Solar Power Plant: A Case Study from the Republic of Cuba. Sustainability. 14(822), 1-23. https://doi.org/10.3390/su14020822
  21. Imam, A.A., Al-Turki, Y.A. and Kumar, S.R. (2019). Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia-A Case Study. Sustainability, 12(262), 1-25. https://doi.org/10.3390/su12010262
  22. Islam, Md.M.M., Kowsar, A., Haque, A.K.M.M., Hossain, M.K., Ali, Md.H., Rubel, M.H.K., Rahman, Md.F. (2022). Techno economic Analysis of Hybrid Renewable Energy System for Healthcare Centre in Northwest Bangladesh, Process Integration and Optimization for Sustainability, 1-14, https://doi.org/10.1007/s41660-022-00294-8
  23. Khandelwal, A. and Shrivastava V. (2018). Viability of grid-connected solar PV system for a village of Rajasthan. IEEE Int Conf Information, Common Instrum Control (ICICIC 2017).1-6,2018, https://doi.org/10.1109/ICOMICON.2017.8279175
  24. Kristiawan, R.B., Widiastuti, I. and Suharno, S. (2018). Technical and economic feasibility analysis of photovoltaic power installation on a university campus in Indonesia. MATEC Web of Conferences 197, 08012 pp 1-5, https://doi.org/10.1051/matecconf/201819708012
  25. Mehmood, A., Shaikh, F. A., Waqas A. (2014). Modeling of the solar photovoltaic systems to fulfill the energy demand of the domestic sector of Pakistan using RETScreen software. Int Conf Util Exhib Green Energy Sustainable Dev, 1–7. https://ieeexplore.ieee.org/document/6828909
  26. Ministère de l'Energie. (sd). Gestion de l'énergie et efficacité énergétique. Ministère de l'Energie - République du Bénin. Consulté le 16 mars 2022 à partir de https://energie.gouv.bj/article/maitrise-denergie-et-efficaciteenergy
  27. Missoum, M., & Loukarfi, L. (2021). Investigation of a Solar Polygeneration System for a MultiStorey Residential Building-Dynamic Simulation and Performance Analysis. International Journal of Renewable Energy Development, 10(3), 445-458 https://doi.org/10.14710/ijred.2021.34423
  28. Na, A. and H. Byrd (2013). Empowering distributed solar pv energy for Malaysian rural housing: towards energy security and equitability of rural communities. International Journal of Renewable Energy Development, 2(1), 59-68. https://www.proquest.com/docview/1284117722?pq-origsite=gscholar&fromopenview=true
  29. Owolabi, A.B., Nsafon, B.E.K., Roh, J. W., Suh, D. and Huh, J. (2019). Validating the techno-economic and environmental sustainability of solar PV technology in Nigeria using RETScreen experts to assess its viability. Sustainable Energy Technologies and Assessments. 36(2019), 1-12 https://doi.org/10.1016/j.seta.2019.100542
  30. Poudyal, R., Loskot, P., and Parajuli, R. (2021). Techno-economic feasibility analysis of a 3-kW PV system installation in Nepal. Renewables: Wind, Water and Solar, 8(5), 1-18, https://doi.org/10.1186/s40807-021-00068-9
  31. RETScreen|Natural Resources Canada nd https://www.nrcan.gc.ca/energy/software-tools/7465 (accessed March 17, 2022)
  32. Salisu, S., Mustafa, M. W., Olatomiwa, L., Mohammed, O.O. (2019). Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria. Alexandria Engineering Journal. 58(4),1103-1118. https://doi.org/10.1016/j.aej.2019.09.013
  33. Sanwogou, Y. Hova, H. Yembi, J.P., Ba, H.Y. and Ibrahima Ly, I. (2019). Conception d’un système solaire photovoltaique pour alimenter le laboratoire de Physique de l’Université de Kara; Togo. Africa Science, 15(5), 238-251. http://www.afriquescience.net/PDF/15/5/21
  34. Shayan, I., Najafi, M., Ghobadian, G., Gorjian, B., & Mazlan, M. (2022). Sustainable design of a near-zero-emissions building assisted by a smart hybrid renewable microgrid. International Journal of Renewable Energy Development, 11(2), 471-480. https://doi.org/10.14710/ijred.2022.43838
  35. Singh A. and Baredar P. (2016). A technical, economic, and environmental performance of hybrid (solar-biomass-fuel cell) energy system. International Journal of Environment, Ecology. 6(5),17-26. http://www.tjprc.org/publishpapers/2-56-1473326661-3.%20Env%20Eco%20-%20IJEEFUS-%20A%20TECHNICAL,%20ECONOMIC,%20AND%20ENVIRONMENTAL%20PERFORMAN.pdf
  36. Singh, U. and Rizwan, M. (2023). A feasibility study and cost-benefit analysis of an off-grid hybrid system for a remote area electrification, Future Energy, 02(01), 12-20, https://doi.org/10.55670/fpll.fuen.2.2.2
  37. Tekumalla, V.D., Pal, D., and Bajpai, P. (2018). Comprehensive performance evaluation of various solar PV system configurations. IET Renewable Power Generation. 13(8), 1261-1270. https://doi.org/10.1049/iet-rpg.2018.5729
  38. Thevenard, D., Leng, G., Martel, S. (2000). The retscreen model for assessing potential PV projects. Conf Rec IEEE Photovolt Spec Conf. 1626–9. https://doi.org/10.1109/PVSC.2000.916211
  39. Vakili, A., Schönborn, S., and Ölçer, A. (2022). Techno-economic feasibility of photovoltaic, wind and hybrid electrification systems for stand-alone and grid-connected shipyard electrification in Italy. Journal of Cleaner Production, 366(15), https://doi.org/10.1016/j.jclepro.2022.132945
  40. Windarta, J., Denis, S.S., Satrio, D.A. and Silaen, J.S. (2020). Economic Feasibility Analysis of Rooftop Solar Power Plant Design with Household-Scale On Grid System in Semarang City. E3S Web of Conferences 202, 09002. https://doi.org/10.1051/e3sconf/202020209002
  41. Yaniktepe, B., Kara, O. and Ozalp, C. (2017). Technoeconomic Evaluation for an Installed Small-Scale Photovoltaic Power Plant. Hindawi International Journal of Photoenergy. 2017, 1-7. https://doi.org/10.1155/2017/3237543

Last update:

No citation recorded.

Last update: 2024-10-13 02:52:51

No citation recorded.