skip to main content

Adsorption method using zeolite to produce fuel grade bioethanol

Chemical Engineering Department, Engineering Faculty, Diponegoro University, Semarang, Central Java, Indonesia

Received: 15 Dec 2022; Revised: 18 Jun 2023; Accepted: 17 Jul 2023; Published: 25 Jul 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Bitter cassava (Manihot glaziovii) has the potential to be converted into bioethanol. However, the distillation process can only purify it to 95% bioethanol. Therefore, it is necessary to carry out an adsorption process to obtain 99.8% bioethanol. This study aimed to investigate the effect of bitter cassava starch hydrolysis time and coral rock in the distillation column on glucose and bioethanol concentrations, respectively. Additionally, the study discussed the effect of adsorbent height (60, 80, 100, or 120 cm) in the adsorption column on bioethanol concentration. There are three main stages for obtaining fuel-grade bioethanol: (i) bitter cassava hydrolysis, (ii) bioethanol production, and (iii) bioethanol purification (distillation and adsorption). Zeolite 4A and natural zeolite were used as adsorbents in this study. The results showed that the best fermentation was obtained at 90 hours, resulting in an ethanol concentration of 13.82% (v/v), which could be purified up to 95.64% through distillation. Furthermore, further purification (adsorption) could extend fuel-grade bioethanol (99.62% and 98.42%). Another analysis also indicated that zeolite 4A was more feasible than natural zeolite for producing fuel-grade bioethanol.

Fulltext View|Download
Keywords: distillation; coral rock; adsorption; zeolite 4A; natural zeolite; bioethanol

Article Metrics:

  1. Abdeen, F.R.H., Mel, M., Al-Khatib, M., & Azmi, A.S. (2011). Dehydration of ethanol on zeolite based media using adsorption process. Proceedings of the 3rd CUTSE International Conference, 312-917
  2. Adejumo, A.L., Agboola, F.K., Layokun, S.K. (2009). Hydrolysis of maize starch using amylotic enzymes extracted from sorghum malt. International Journal of Biological and Chemical Sciences, 3(5), 1030-1041. https://doi.org/10.4314/ijbcs.v3i5.51082
  3. Adenle, A. A., Haslam, G. E., & Lee, L. (2013). Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182-195. https://doi.org/10.1016/j.enpol.2013.05.088
  4. Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631-653. https://doi.org/10.1016/j.rser.2016.07.015
  5. Ariyanti, D., and Hadiyanto, H. (2013). Ethanol production from whey by kluyveromyces marxianus in batch fermentation system: Kinetics parameters estimation (2013) Bulletin of Chemical Reaction Engineering and Catalysis, 7 (3), 179-184. https://doi.org/10.9767/bcrec.7.3.4044.179-184
  6. Cardona, C. A., & Sánchez, Ó. J. (2007). Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology, 98(12), 2415-2457. https://doi.org/10.1016/j.biortech.2007.01.002
  7. Dahnum, D., Tasum, S.O., Triwahyuni, E., Nurdin, M., Abimanyu, H. (2014). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia, 68, 107 – 116. https://doi.org/10.1016/j.egypro.2015.03.238
  8. Delgado, J.A., Águeda, V.I., Uguina, M.A., Sotelo, J.L., García-Sanz, A., & García, A. (2015). Separation of ethanol-water liquid mixtures by adsorption on BPL activated carbon with air regeneration. Separation and Purification Technology, 149, 370-380. https://doi.org/10.1016/j.seppur.2015.06.011
  9. Fitriana, N., dan Rusmini. 2019. Pembuatan Zeolit Alam Teraktivasi HCl dan Karakterisasinya. UNESA Journal of Chemistry, 8(1). https://doi.org/10.26740/ujc.v8n1.p%25p
  10. Gackowski, M., Podobiński, J., Broclawik, E., & Datka, J. (2019). IR and NMR Studies of the Status of Al and Acid Sites in Desilicated Zeolite Y. Molecules, 25(1), 31. https://doi.org/10.3390/molecules25010031
  11. Genencor (2009) STARGEN™ 002: Granular Starch Hydrolyzing Enzyme for Ethanol Production
  12. Hadiyanto, H., Ariyanti, D., Aini, A.P., Pinundi, D.S. (2013). Batch and fed-batch fermentation system on ethanol production from whey using kluyveromyces marxianus. International Journal of Renewable Energy Development, 2 (3), 127-131. https://doi.org/10.14710/ijred.2.3.127-131
  13. Handayani, N. A., Santosa, H., Sofyan, M., Tanjung, I., Chyntia, A., Putri, P. A. R. S., & Ramadhan, Z. R. (2013). Biodiesel production from kapok (Ceiba pentandra) seed oil using naturally alkaline catalyst as an effort of green energy and technology. International Journal of Renewable Energy Development, 2(3), 169-173. https://doi.org/10.14710/ijred.2.3.169-173
  14. Handrian, H., Sediawan, W. B., & Mindaryani, A. (2017). Adsorpsi Air dari Campuran Uap Etanol-Air dengan Zeolit Sintetis 4A dalam Packed Bed dalam Rangka Produksi Fuel Grade Ethanol. Jurnal Rekayasa Proses, 11(2), 68-77. https://doi.org/10.22146/jrekpros.30344
  15. Hargono, H., Jos, B., & Kumoro, A. C. (2017). Kinetics of the enzymatic hydrolysis of sweet cassava starch and bitter cassava flour and gadung (Dioscorea hispida Dennst) flour at low temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 256-262. https://doi.org/10.9767/bcrec.12.2.808.256-262
  16. Hargono, H., Jos, B., & Kumoro, A. C. (2017b). Production of bioethanol from sweet and bitter cassava starches by simultaneous saccharification and fermentation using Saccharomyces cerevisiae. Advanced Science Letters, 23(3), 2427-2431. https://doi.org/10.1166/asl.2017.8682
  17. Hargono, H., Jos, B., Purwanto, P., Sumardiono, S., Zakaria, M.F.(2021). Fuel grade bioethanol production from suweg starch through distillation-adsorption process using natural zeolite. IOP Conf. Ser.: Mater. Sci. Eng.2021, 1053 012114. https://doi.org/10.1088/1757-899X/1053/1/012090
  18. Hossain, A. B. M. S., & Fazliny, A. R. (2010). Creation of alternative energy by bio-ethanol production from pineapple waste and the usage of its properties for engine. African Journal of Microbiology Research, 4(9), 813-819. https://academicjournals.org/article/article1380209514_Hossain%20and%20Fazliny.pdf
  19. Huang, H. J., Ramaswamy, S., Tschirner, U. W., & Ramarao, B. V. (2008). A review of separation technologies in current and future biorefineries. Separation and purification technology, 62(1), 1-21.Adogbo GM, Ayodele AJ 2013 International J. Sci. Eng. Res. 4 (4) 1330- 1334. https://doi.org/10.1016/j.seppur.2007.12.011
  20. Jambo, S. A., Abdulla, R., Azhar, S. H. M., Marbawi, H., Gansau, J. A., & Ravindra, P. (2016). A review on third generation bioethanol feedstock. Renewable and sustainable energy reviews, 65, 756-769. https://doi.org/10.1016/j.rser.2016.07.064
  21. Karimi, S., Yaraki, M.T., & Karri, R.R. (2019). A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renewable and Sustainable Reviews, 107, 535-553. https://doi.org/10.1016/j.rser.2019.03.025
  22. Król, M., Mozgawa, W., Jastrzębski, W., & Barczyk, K. (2012). Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous and Mesoporous Materials, 156, 181–188. https://doi.org/10.1016/j.micromeso.2012.02.040
  23. Kusmiyati & Susanto, H. (2015). Fuel grade bioethanol production from Iles-iles (Amorphophalus campanulatus) tuber. Procedia Environmental Sciences, 23, 199-206. https://doi.org/ 10.1016/j.proenv.2015.01.031
  24. Lee, Y. H., Chen, C. H., Fazara, M. U., & Hatim, M. M. I. (2021, May). Production of fuel grade anhydrous ethanol: a review. In IOP Conference Series: Earth and Environmental Science (Vol. 765, No. 1, p. 012016). IOP Publishing. https://doi.org/10.1088/1755-1315/765/1/012016
  25. Lei, Z., Wang, H., Zhou, R., & Duan, Z. (2002). Influence of salt added to solvent on extractive distillation. Chemical Engineering Journal, 87(2), 149-156. https://doi.org/10.1016/S1385-8947(01)00211-X
  26. Mehdi Naraki, M., Parvasi, P., Jokar, S. M., & Iulianelli, A. (2023). Experimental and theoretical feasibility study of methanol application for Echium oil-based biodiesel production. Renewable Energy, 202, 1241-1247. https://doi.org/10.1016/j.renene.2022.11.118
  27. Mekala, M., Neerudi, B., Are, P.R., Surakasi, R., Manikandan, G., Kakara, V.R., & Dhumal, A.A. (2022). Water removal from an ethanol-water mixture at azeotropic condition by adsorption technique. Adsorption Science & Technology, 8374471, 1-10. https://doi.org/10.1155/2022/8374471
  28. Muhaji and Sutjahjo D H. (2018). The characteristics of bioethanol fuel made of vegetable raw materials. IOP Conf Series, 2018: Material Science and Engineering 296, 012019. https://doi.org/10.1088/1757-899X/296/1/012019
  29. Nazloo, E. K., Moheimani, N. R., & Ennaceri, H. (2022). Biodiesel production from wet microalgae: Progress and challenges. Algal Research, 102902. https://doi.org/10.1016/j.algal.2022.102902
  30. Ocreto, J. B., Chen, W. H., Ubando, A. T., Park, Y. K., Sharma, A. K., Ashokkumar, V., ... & De Luna, M. D. G. (2021). A critical review on second-and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment. Renewable and Sustainable Energy Reviews, 152, 111679. https://doi.org/10.1016/j.rser.2021.111679
  31. Perry, R.H., and Green, D.W., 1997, Perry’s Chemical Engineers’ Handbook, 7th Edition, Mc Graw-Hill Co, New York, p.1128, 1490-1497, 1534-1537
  32. Pilling, M., & Holden, B. S. (2009). Choosing trays and packings for distillation. Am. Inst. Chem. Eng. CEP, 105, 44-50.]Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316-4342. https://doi.org/10.1016/j.rser.2012.03.047
  33. Shanavas, S., Padmaja, G., Moorthy, S.N.,Sajeev, M.S., Sheriff, J.T. (2010). Process Optimization for Bioethanol Production from Cassava Starch Using Novel Eco-Friendly Enzymes. Biomass and Bioenergy, 35: 901-909. https://doi.org/10.1016/j.biombioe.2010.11.004
  34. Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. (2019). Reactor technologies for biodiesel production and processing: A review. Progress in Energy and Combustion Science, 74, 239-303. https://doi.org/10.1016/j.pecs.2019.06.001
  35. Vane, L. M., Alvarez, F. R., Rosenblum, L., & Govindaswamy, S. (2013). Efficient ethanol recovery from yeast fermentation broth with integrated distillation–membrane process. Industrial & Engineering Chemistry Research, 52(3), 1033-1041. https://doi.org/10.1021/ie2024917
  36. Yussof, N. S., Utra, U., & Alias, A. K. (2013). Hydrolysis of native and cross‐linked corn, tapioca, and sweet potato starches at sub‐gelatinization temperature using a mixture of amylolytic enzymes. Starch‐Stärke, 65(3‐4), 285-295. https://doi.org/10.1002/star.201200002

Last update:

No citation recorded.

Last update: 2024-04-22 15:17:03

No citation recorded.