skip to main content

Kajian Spasial Multi Kriteria DRASTIC Kerentanan Air tanah Pesisir Akuifer Batugamping di Tanjungbumi Madura

1Universitas Gadjah Mada, Indonesia

2Palawa Karya, Indonesia

Received: 31 May 2020; Published: 30 Nov 2020.
Editor(s): Sudarno Utomo

Citation Format:
Abstract

Air tanah pesisir memiliki potensi kerentanan air tanah terhadap pencemaran tinggi, hal tersebut dipengaruhi oleh penyusun batuan bersifat porus. Selain faktor porusnya sifat batuan melolosakan air tanah, batugamping juga memiliki potensi kerentanan tinggi dengan media celah atau rekah dalam menyimpan dan melolosakan air tanah dengan percepatan pergerakan air tanah yang tinggi. Semakin cepat batuan mengalirkan air di dalam tanah, maka berpotensi tinggi dalam menyebarkan sumber pencemar di dalam sistem akuifer. Kecamatan Tanjungbumi berada di pesisir dengan batuan penysun didominasi oleh pasiran dan batugamping (Formasi Madura). Secara litologi akuifer, terdiri atas 70,3 % akuifer batugamping dan 29,7 % akuiufer pasiran. Tujuan dari penelitian ini adalah untuk menentukan zona kerentanan air tanah terhadap pencemaran pada akuifer pesisir dengan penyusun batuan dominan batugamping. Untuk mencapai tujuan tersebut, maka dilakukan analisis spasial multi kriteria dengan pendekatan DRASTIC. Metode DRASTIC dapat merepresentarikan kerentanan air tanah dengan pendekatan hidrogeologi. Paramater yang digunakan antara lain depth to water / kedalaman muka air tanah (D), recharge / imbuhan air (R), aquifer / jenis akufer (A), soil media / tekstur tanah (S), topography / kemiringan lereng (T), impact of vadose zone media / jenis zona tak jenuh (I), dan conductivity hydraulic / konduktivitas hidraulis akuifer (C). Parameter yang digunakan mempunyai pengaruh dalam menentukan kerentanan yang dibedakan dengan nilai dan nilai bobot. Pendekatan parameter bobot tinggi memberikan informasi faktor yang paling berpengaruh mempengaruhi kerentanan air tanah. Perhitungan hasil skor total diperoleh dari perhitungan linier seluruh parameter, kemudian klasifikasikan kelas kerentanan air tanah terhadap pencemaran. Hasil penelitian menunjukkan kerentanan air tanah multikriteria menghasilkan lima tingkat kerentanan air tanah terhadap pencemaran. Kerentanan sangat rendah 2,18 km2 (3,20 %), kerentanan rendah seluas 10,01 km2 (14,69 %), kerentanan sedang seluas 45,74 km2 (67,11 %), kerentanan tinggi seluas 7,22 km2 (10,59 %), dan kerentanan sangat tinggi dengan luas 3 km2 (4,40%) dari luas kecamatan Tanjungbumi.

Abstract

Coastal groundwater has the potential for groundwater vulnerability to high pollution, this is influenced by porous rock constituents. In addition to the porous factor of groundwater, limestone also has a high potential for vulnerability to the medium of gaps or fractures in storing and releasing groundwater with a high acceleration of groundwater movement. The faster the rock drains water in the soil, the higher the potential for spreading pollutants in the aquifer system. Tanjungbumi Subdistrict is located on the coast with the rock formation dominated by sand and limestone (Madura Formation). In terms of aquifer lithology, it consists of 70,3 % limestone aquifer and 29.7% sandwater aquifer. Purpose of this study was to determine the zone of groundwater vulnerability to pollution in coastal aquifers with limestone dominant rock constituents. To achieve this goal, a multi-criteria spatial analysis using the DRASTIC approach was carried out. The DRASTIC method can represent groundwater vulnerability with a hydrogeological approach. The parameters used include depth to water (D), recharge (R), aquifer (A), soil media (S), topography (T), impact of vadose zone media (I), and hydraulic conductivity (C). The parameters used have an influence in determining the vulnerability which is differentiated by the value and weight value. The high weight parameter approach provides information on the factors that most influence the vulnerability of groundwater. The calculation of the total score is obtained from a linear calculation of all parameters, then classify the groundwater vulnerability class to pollution. The results showed that multi-criteria groundwater vulnerability resulted in five levels of groundwater vulnerability to pollution. Very low vulnerability is 2,18 km2 (3,20 %), low vulnerability is 10,01 km2 (14,69 %), medium vulnerability is 45,74 km2 (67,11 %), high vulnerability is 7,22 km2 (10,59 %), and very high vulnerability with an area of 3 km2 (4,40 %) of the area of Tanjungbumi district.

Fulltext View|Download
Keywords: Air tanah, Pesisir, Batugamping, Kerentanan, Pencemaran
Funding: Fakultas Geografi Universitas Gadjah Mada, PT Pertamina Hulu Energi West Madura Offshore (PHE WMO)

Article Metrics:

  1. Abdeslam, I., Fehdi, C., Djabri, L. 2017. Application of Drastic Method for Determining The Vurnerability of An Alluvial Aquifer: Morsott-El Aouinet North East of Algeria: Using Arcgis Environment. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability, Beirut Lebanon. Energy Procedia Vol. 119. Pages 308–317
  2. Abdullah, T.O., Ali, S.S., Al-Ansari, N.A., Knutsson, S. 2020. Assessment Of Groundwater Vulnerability To Pollution Using Two Different Vurnerability Models in Halabja-Saidsadiq Basin, Iraq. Groundwater For Sustainable Development.Vol. 10 No. 4. Pages 1-6
  3. Abuduwaili, J., Issanova, G., Saparov, G. 2019. Water Resources Development and Management. Springer. Springer Nature Singapore
  4. Aller, L., Bennett, t., Lehr, J. H., Petty, r. J., and Hackett, G. 1987. DRASTIC; A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. United States (USA): U.S. Environ. Prot. Agency, United States (USA)
  5. Arshad, A., Zhang, Z., Zang, W., Dilawar, A. 2020. Mapping Favorable Groundwater Potential Recharge Zones Using A GIS-Based Analytical Hierarchical Process And Probability Frequency Ratio Model: A Case Study From An Agro-Urban Region Of Pakistan. Geoscience Frontiers. Vol. 11 No. Pages 5-19
  6. Azis, S., Sutrisno, Noya, Y., Brata K. 1991. Peta Geologi Lembar Tanjungbumi dan Pamekasan, Jawa. Pusat Penelitian dan Pengembangan Geologi. Bandung
  7. Cahyadi, A. 2019. Analisis Kerentanan Air tanah terhadap pencemaran di Pulau Koral Sangat Kecil dengan Menggunakan Metode GOD. Jurnal Geografi. Vol. 26 No. 1. Pages 48-53
  8. Ciemens, M., Khurelbaatar, G., Merz, R., Siebert, C., Affeden, M.V., Rodiger, T. 2020. Groundwater Protection Under Water Scarcity; From Regional Risk Assessment To Local Wastewater Treatment Solutions In Jordan. Science of The Total Environment. Vol. 7 No. 1. Pages 1-13
  9. Badan Informasi Geospasial (BIG). 2020. DEMNAS 1609-21
  10. Badan Standardisasi Nasional (BSN). 2002. Standar Nasioanl Indonesia (SNI) No.19-6728.1-2002, Tentang Penyusunan Neraca Sumber Daya - Bagian 1: Sumber Daya Air Spasial. Badan Standardisasi Nasional (BSN)
  11. Bakr, H.A.E.A. 2020. Groundwater Vulnerability Assessment In Different Types Of Aquifers. Agricultural Water Management. Vol. 1. Pages 10-14
  12. Devianto, L.A., Lusiana, N., Ramdani, F. 2019. Analisis Kerentanan Pencemaran Air Tanah di Kota Batu Menggunakan Analisis Multikriteria Spasial dengan Indek DRASTIC. Jurnal Wilayah dan Lingkungan. Vol. 7 No. 2. Hal 90-104
  13. Febriarta, E., Suswanti, dan Novandaru, S. 2019. Interpretasi Electrical Resistivity Tomography (ERT) Untuk Pendugaan Air Tanah Dangkal Pada Formasi Gunungapi Muda. Jurnal Nasinal Teknologi Terapan. Vol. 13 No. 1. Hal 49-62
  14. Febriarta, E., Prabawa, B. A., Rosaji, F.S.C. 2018. Sumber Daya Air di Pulau Pelapis Kepuluan Karimata, Kabupaten Kayong Utara, Kalimantan Barat. Prosiding Seminar nasional Ke-4 Pengelolaan Pesisir dan Daerah Aliran Sungai. Vol. 4. Hal 181-186
  15. Febriarta, E., Larasti, A. 2020. Karakteristik Akuifer Air Tanah Dangkal di Enpdan Muda Merapi Yogyakarta. Jurnal Sains dan Teknologi Lingkungan. Vol. 12 No. 2. Hal 84-99
  16. Febriarta, E., dan Oktama, R. 2020. Pemetaan Daya Dukung Lingkungan Berbasis Jasa Ekosistem Penyedia Pangan dan Air Bersih di Kota Pekalongan. Jurnal Ilmu Lingkungan. Vol. 18 No. 2. Hal 283-289
  17. Febriarta, E., dan Purnama, S. 2020. Identifikasi Keterdapatan Airtanah Dengan Electromagnetic Very Low Frequency (EM-VLF) di Non Cekungan Airtanah Kecamatan Ungaran Timur. Jurnal Geosains dan Teknologi. Vol. 3 No. 2. Hal 52-62
  18. Fetter, C.W., 2014. Applied Hydrogeology Fourth Edition. Pearson New International Education. England
  19. Gaikwad, S.K., Kadam, A.K., Ramgir, R.R., Kashikar, A.S., Wagh, V.M., Kandekar. A.M., Gaikwad, S.P., Madale, R.B., Pawar, N.J., Kamble, K.D. 2020. Assessment Of The Groundwater Geochemistry From A Part Of West Coast Of India Using Statistical Methods And Water Quality Index. HydroReasearch. Vol. 3. Pages 48-60
  20. Hailin, Y.,Ligang, X., Chang, Y., Jiaxing, X. 2011. Evaluation of Groundwater Vurnerability with Improved DRASTIC Method. 2011 3rd International Conference on Environmental Science and Information Application Technology (ESIAT 2011). Procesia Environmental Sciences Vol. 10. Pages 2690-2695
  21. Jena, S., Panda, R.K., Ramadas, M., Mohanty, P., Pattaniak, S.K. 2020. Delineation Of Groundwater Storage And Recharge Potential Zones Using Rs-Gis-Ahp: Application In Arable Land Expansion. Remote Sensing Applications: Society and Environment. Vol. 19. Pages 1-12
  22. Lathamani, R., Jandarhana, M.R., Mahalingan, B., Suresha, S. 2015. Evaluation Of Aquifer Vulnerability Using Drastic Model And GIS: A Case Study Of Mysore City, Karnataka, India. Aquatic Procedia. Vol. 4. Pages 31-38
  23. Marfai, M.A, Febriarta, E., Prabawa, B.A., Rosaji, F.S.C. 2019. Rencana Pemenuhan Kuantitas Dan Kualitas Air Desa Bandangdaja, Tanjungbumi, Bangkalan, Madura. Laporan Final. Fakultas Geografi, Universitas Gadjah Mada. Yogyakarta
  24. Muhammad, A.M., Zhonghua, T., Dawood, A.S., Eral, B. 2015. Evaluation of Local Groundwater Vulnerability based on DRASTIC Index Method in Lahore, Pakistan. Geofísica Internacional. Vol. 1. Pages 67-81
  25. Orimoloye, I.R., Kalumba, A.M., Mazinyo, S., Nel, W. 2020. Geospatial Analysis of Wetland Dynamics: Wetland Depletion and Biodiversity Conservation of Isimangaliso Wetland, South Africa. Journal of King Saud University - Science. Vol. 32 No. 1. Pages 90-96
  26. Pacheco, F.A.L., Pires, L.M.G.R., Santos, R.M.B., dan Fernandes, L.F.S. 2015. Factor Weighting In DRASTIC Modeling. Science of the Total Environment Vol. 505. Pages 474-486
  27. Prusty, P., Farooq, S.H. 2020. Seawater intrusion in the coastal aquifers of India - A review. HydroResearch. Vol. 3. Pages 61-74
  28. Putranto, T.T., Ali, R.K., dan Putro, A.B. 2019. Studi Kerentanan Air tanah terhadap Pencemaran dengan Menggunakan Metode DRASTIC pada Cekungan Air tanah (CAT) Karanganyar-Boyolali, Provinsi Jawa Tengah. Jurnal Ilmu Lingkungan, Vol. 17 No. 1. Pages 158-171
  29. Peraturan Menteri Energi dan Sumber Daya Mineral (Permen ESDM). 2012. Penetapan Kawasan Bentang Alam Karst (KABAK) nomor 17 tahun 2012. Jakarta
  30. Menteri Energi dan Sumber Daya Mineral (ESDM). 2017a. Litologi Akuifer
  31. Menteri Energi dan Sumber Daya Mineral (ESDM). 2017b. Produktivitas Air Tanah
  32. Menteri Energi dan Sumber Daya Mineral (ESDM). 2017c. Geologi Struktur
  33. Smith, D.N.I., Ortega-Camacho, D., Acosta-Gonzalez. G. 2020. A Multi-Approach Assessment Of Land Use Effects On Groundwater Quality In Akarstic Aquifer. Heliyon. Vol. 6 No. 1. Pages 1-11
  34. Sugianti, K., Mulyadi, D., Maria, R. 2016. Analisis Kerentanan Pencemaran Air Tanah dengan Pendekatan DRASTIC di Bandung Selatan. Jurnal lingkungan dan bencana geologi. Vol. 7 No. 1. Hal 19-33
  35. Sukardi. 1992. Geologi Lembar Surabaya & Sapulu, Jawa. Badan Geologi, Pusat Penelitian dan Pengembangan Geologi.Bandung. Badan Geologi
  36. Singhal, B.B.S., and Gupta, R.P. 2010. Applied Hydogeology of Fracture Rock, Springer Dordrecht Heidelberg London. Springer
  37. Sisultan. 2020. Peta Tanah Skala 1:50.000 Bangkalan, Provinsi Jawa Timur
  38. Thapa, R., Gupta, S., Guin, S., Kaur, H. 2018. Sensitivity Analysis and Mapping The Potential Groundwater Vurnerability Zones in Birbhum District, India: A Comparative Approach Between Vurnerability Models. Water Science. Vol. 32. Pages 44-66
  39. Yang, H., Kagabu, M., Okumura, A., Shimada, Jun., Shibata, T., Paniti, D.L. 2020. Hydrogeochemical Processes And Long-Term Effects Of Sea-Level Risein An Uplifted Atoll Island Of Minami-Daito, Japan. Journal of Hydrology: Regional Studies. Vol. 31. Pages 1-11
  40. Vrba, J. and Zaporozec, A. 1994. Guidebook on Mapping Groundwater Vulnerability. Hannover. International Association of Hydrogeologist

Last update:

  1. Pemetaan Zona Kerentanan Airtanah Pesisir Formasi Batugamping Terhadap Pencemaran Nitrat Di Kecamatan Sepulu Madura

    Erik Febriarta, Muh Aris Marfai, Dhandhun Wacano, Ajeng Larasati, Dyah Rahmawati Hizbaron. Jurnal Ilmu Lingkungan, 20 (2), 2022. doi: 10.14710/jil.20.2.219-230
  2. Evaluasi Kebutuhan Air Persemaian Di Kawasan Karst Nggorang Manggarai Barat, Labuan Bajo, Nusa Tenggara Timur

    Aditya Pandu Wicaksono, Erik Febriarta, Dobrak Tirani Tegak Nurani, Ajeng Larasati. Jurnal Ilmu Lingkungan, 18 (3), 2020. doi: 10.14710/jil.18.3.572-581
  3. Penilaian Zona Kerentanan Air Tanah Terhadap Pencemaran dengan Metode SINTACS di Ranai (Pulau Bunguran)

    Erik Febriarta, Dian Indah Shofarini. Jurnal Wilayah dan Lingkungan, 9 (1), 2021. doi: 10.14710/jwl.9.1.34-49
  4. Assessment of Groundwater Vulnerability to Pollution in the Metro Hilir Watershed Using the SINTACS Method

    Muhammad Farhan Adi Wibowo, Ferryati Masitoh. IOP Conference Series: Earth and Environmental Science, 1406 (1), 2024. doi: 10.1088/1755-1315/1406/1/012028

Last update: 2024-11-21 00:57:43

No citation recorded.