skip to main content

Potensi Chlorella sp. dan Pseudomonas sp. dari Areal Tambang Emas sebagai Mikroorganisme Potensial Pereduksi Merkuri

Universitas Palangka Raya, Indonesia

Received: 29 Nov 2020; Published: 30 Nov 2020.
Editor(s): Sudarno Utomo

Citation Format:

Kawasan hutan maupun sungai-sungai di Kalimantan Tengah, telah terdampak akibat kegiatan penambangan emas skala kecil (ilegal) selama puluhan tahun. Para penambang menggunakan merkuri sebagai bahan kimia utama dalam prosesekstraksi emas, dan setiap tahun melepaskan tidak kurang dari 1.000ton bahan berbahaya ini ke lingkungan, baik udara maupun air. Pencemaran merkuri di lingkungan perairan, dapat dikurangi atau dihilangkan dengan menggunakan sekelompok mikroorganisme yang mampu untuk mereduksi merkuri yang disebut dengan bioremediasi. Metode bioremediasi lebih ekonomis, karena mikroorganisme memiliki kemampuan untuk mendegradasi kontaminan ke dalam bentuk yang tidak berbahaya. Bakteri dan alga yang hidup di perairan sekitar tambang emas diduga memiliki kemampuan resistensi terhadap kontaminan logam berat merkuri. Sampel bakteri dan alga yang diambil dari sekitar tambang diseleksi dengan perlakuan merkuri (Hg) untuk mengetahui potensinya sebagai bioremediator logam berat. Penelitian ini bertujuan untuk Eksplorasi dan Optimasi Mikroorganisme Potensial untuk Bioremediasi Merkuri dari Areal Tambang Emas di Sungai Kahayan. Pengambilan sampel dilakukan di 5 titik yang teridiri 3 titik di areal tambang (T1, T2, T3), 1 titik di hulu tambang (HU), dan 1 titik di hilir tambang (HI). Hasil penelitian menunjukkan: (1) mikroalga potensial bioremediasi merkuri dari areal tambang emas sungai Kahayan termasuk ke dalam genus Chlorella dan mampu bertahan dengan perlakuan konsentrasi Hg sampai 7 ppm; dan (2) bakteri potensial bioremediasi merkuri dari areal tambang emas sungai Kahayan mampu bertahan dengan perlakuan konsentrasi Hg sampai 13 ppm yang terdiri dari 3 isolat, yakni I1 (bakteri dari sampel air), I2 (bakteri dari sampel air), dan I3 (bakteri dari sampel sedimen). Ketiga isolat bakteri potensial termasuk ke dalam kelompok bakteri Gram Negatif. Isolat 1 dan isolat 3 merupakan spesies Pseudomonas sp. berdasarkan kemampuannya menghasilkan pigmen berwarna kuning pada media cair.


Forest areas and rivers in Central Kalimantan have been affected by small-scale (illegal) gold mining activities for decades. Miners use mercury as the main chemical in the gold extraction process, and annually release no less than 1,000 tons of this hazardous material into the environment, both air and water. Mercury pollution in aquatic environments can be reduced or eliminated by using a group of microorganisms capable of reducing mercury known as bioremediation. The bioremediation method is more economical, because microorganisms have the ability to degrade contaminants into harmless forms. Bacteria and algae that live in the waters around the gold mine are thought to have the ability to resist mercury heavy metal contaminants. Bacteria and algae samples taken from around the mine were selected with mercury (Hg) treatment to determine their potential as a heavy metal bioremediator. This research aims to explore and optimize potential microorganisms for bioremediation of mercury from the gold mine area in the Kahayan River. Sampling was carried out at 5 points consisting of 3 points in the mine area (T1, T2, T3), 1 point upstream of the mine (HU), and 1 point downstream of the mine (HI). The results showed: (1) the potential microalgae bioremediation of mercury from the gold mining area of the Kahayan River was included in the Chlorella genus and was able to survive the treatment of Hg concentrations up to 7 ppm; and (2) potential mercury bioremediation bacteria from the gold mining area of the Kahayan River were able to survive with a treatment of up to 13 ppm Hg concentrations consisting of 3 isolates, namely I1 (bacteria from water samples), I2 (bacteria from water samples), and I3 (bacteria from sediment samples). The three potential bacterial isolates belong to the Gram negative bacteria group. Isolate 1 and isolate 3 are Pseudomonas sp. species based on their ability to produce yellow pigment in liquid media.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Manuscript Neneng et al. (2020) Plagiarism Check PCX 6%
Type Other
  Download (120KB)    Indexing metadata
Keywords: Bioremediasi, Logam Berat, Merkuri, Mikroorganisme, Bakteri, Mikroalga, Chlorella, Pseudomonas

Article Metrics:

  1. Al-Rub, F. A. A., El-Naas, M. H., Ashour, I., and Al-Marzouqi, M. 2006. Biosorption of Copper on Chlorella vulgaris from Single, Binary and Ternary metal aqueous solutions. Process Biochemistry, Vol. 41 No. 2. Pages 457–464
  2. Baldi, F., Bargagli, R., Focardi, S., and Fossi, C. 1983. Mercury and Chlorinated Hydrocarbons in Sediments from the Bay of Naples and Adjacent Marine Areas. Mar. Pollut. Bull. Vol. 14. Pages 108–111
  3. Balzano, S., Sardo, A., Blasio, M., Chahine, T. B., Dell’Anno, F., Sansone, C., and Brunet, C. 2020. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Frontiers in Microbiology, Vol. 11. Pages 1–16
  4. Barkay, T., Kritee, K., Boyd, E., and Geesey, G. 2003. Bacterial Mercury Resistance from Atoms to Ecosystem. FEMS Microbiol, Vol. 27. Pages 355–384
  5. Bernhard-Reversat, F., and Schwartz, D. 1997. Change in Lignin Content During Litter Decomposition in Tropical Forest Soils (Congo): comparison of exotic plantations and native stands. Comptes Rendus de l’Académie Des Sciences - Series IIA - Earth and Planetary Science, Vol. 325 No. 6. Pages 427–432
  6. Bertrand, R. L. 2019. Lag Phase Is a Dynamic, Organized, Adaptive, and Evolvable Period That Prepares Bacteria for Cell Division. Journal of Bacteriology, Vol. 201 No. 7
  7. Bilal, M., Rasheed, T., Sosa‐Hernández, J. E., Raza, A., Nabeel, F., & Iqbal, H. M. N. 2018. Biosorption: An Interplay Between Marine Algae and Potentially Toxic Elements—A review. Marine Drugs, Vol. 16 No. 2. Pages 1–16
  8. Brune, D., Nordberg, G. F., Vesterberg, O., Gerhardsson, L., and Wester, P. O. 1991. A review of normal concentrations of mercury in human blood. Science of the Total Environment, The, Vol. 100. Pages 235–282
  9. Chen, J.-Z., Tao, X.-C., Xu, J., Zhang, T., and Liu, Z.-L. 2005. Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column. Process Biochemistry, Vol. 40 No. 12. Pages 3675–3679
  10. Chojnacka, K., Chojnacki, A., and Górecka, H. 2005. Biosorption of Cr3+, Cd2+ and Cu2+ Ions by Blue–Green Algae Spirulina sp.: Kinetics, Equilibrium and the Mechanism of the Process. Chemosphere, Vol. 59 No. 1. Pages 75–84
  11. Cursino, L., Oberdá, S. M., Cecilio, R. V., Moreira, R. M., Chartone-Souza, E., and Nascimento, A. M. A. 1999. Mercury Concentration in the Sediment at Different Gold Prospecting Sites Along the Carmo Stream, Minas Gerais, Brazil, and Frequency of Resistant Bacteria in the Respective Aquatic Communities. Hydrobiologica, Vol. 394. Pages 5–12
  12. Dwivedi, S. 2010. Bioremediation of Heavy Metal by Algae: Current and Future Perspective. Journal of Advanced Laboratory Research in Biology, Vol. 3 No. 3
  13. Endo, G., Ji, G., and Silver, S. 1995. Heavy Metal Resistance Plasmids and Use in Bioremediation. In In: Moo-Young M., Anderson W.A., Chakrabarty A.M. (Eds) Environmental Biotechnology
  14. Fard, R. F., Azimi, A. A., and Bidhendi, G. R. N. 2011. Batch Kinetics and Isotherms for Biosorption of Cadmium Onto Biosolids. Desalination and Water Treatment, Vol. 28 No. 1–3. Pages 69–74
  15. Huss, V. A. R., and Sogin, M. L. 1990. Phylogenetic Position of Some Chlorella Species within the Chlorococcales Based Upon Complete Small-Subunit Ribosomal RNA Sequences. Journal of Molecular Evolution, Vol. 31 No. 5. Pages 432–442
  16. Illman, A., Scragg, A., and Shales, S. 2000. Increase in Chlorella Strains Calorific Values when Grown in Low Nitrogen Medium. Enzyme Microb Technol, Vol. 27
  17. Imani, S., Rezaei-Zarchi, S., Hashemi, M., Borna, H., Javid, A., Zand, A. M., and Abarghouei, H. B. 2011. Hg, Cd and Pb Heavy Metal Bioremediation by Dunaliella Alga. Journal of Medicinal Plants Research, Vol. 5 No. 13. Pages 2275–2780
  18. Irawati, W., Patricia, Soraya, Y., and Baskoro, A. H. 2012. A Study on Mercury-Resistant Bacteria Isolated from a Gold Mine in Pongkor Village, Bogor, Indonesia. HAYATI Journal of Biosciences, Vol. 19 No. 4. Pages 197–200
  19. Krienitz, L., Hegewald, E. H., Hepperle, D., Huss, V. A. R., Rohr, T., and Wolf, M. 2004. Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia, Vol. 43 No. 5. Pages 529–542
  20. Kumar, M., Singh, A. K., and Sikandar, M. 2020. Biosorption of Hg (II) from Aqueous Solution Using Algal Biomass: Kinetics and Isotherm Studies. Heliyon, Vol. 6 No. 1
  21. Lamaia, C., Kruatrachuea, M., Pokethitiyook, P., Upathamb, E. S., and Soonthornsarathoola, V. 2005. Toxicity and Accumulation of Lead and Cadmium in the Filamentous Green Alga Cladophora fracta (O.F. Muller ex Vahl) Kutzing: A laboratory study. Science Asia, Vol. 31. Pages 121–127
  22. Leung, M. 2004. Bioremediation : Techniques for Cleaning Up A Mess. BioTeach Journal, Vol. 2. Pages 18–22
  23. Li, B., Qiu, Y., Shi, H., and Yin, H. 2016. The importance of Lag Time Extension in Determining Bacterial Resistance to Antibiotics. Analyst, Vol. 141 No. 10. Pages 3059–3067
  24. Mangindara, A. 2018. Studi Pemanfaatan Fitoplankton (Chlorella sp.) dalam Mengurangi Kadar Logam Berat Merkuri (Hg) di Laut (Universitas Hasanuddin)
  25. Melanson, S. 2017. Toxicity Associated with Mercury. Decision Support in Medicine, LLC
  26. Mellor, E., Paul, L., Christine O’, D., and Dave, C. 1996. The Microbiology of insitu bioremediation. Water Chem, Vol. 66. Pages 257–259
  27. Misra, T. K. 1992. Bacterial Resistances to Inorganic Mercury Salts Andmorganomercurials. Plasmid, Vol. 25. Pages 4–16
  28. Nascimento, A. M. A., and Souza, E. C. 2003. Operon Mer: Bacterial Resistance to Mercury and Potential for Bioremediation of Contaminated Environments. Genet Mol Res, Vol. 2. Pages 92–101
  29. Neneng, L. 2008. Exploration of Potential Isolates Bacterial for Mercury (Hg2+) Bioremediation from Gold Mining Area in Kahayan River, Central Kalimantan. Agritek Journal, Vol. 16. Pages 189–194
  30. Neneng, Liswara, and Gunawan, Y. 2018. The Role of Coenzymes on Mercury (Hg2+) Bioremediation by Isolates Pseudomonas aeruginosa KHY2 and Klebsiella Pneumonia KHY3. Journal of Tropical Life Science, Vol. 8 No. 1. Pages 16–20
  31. Nies, D. H. 1992. CzcR and CzcD, Gene Products Affecting Regulation of Resistance to Cobalt, Zinc, and Cadmium (Czc System) in Alcaligenes Eutrophus. Journal of Bacteriology, Vol. 174 No. 24. Pages 8102 LP – 8110
  32. Osborn, A. M., Bruce, K. D., Strike, P., and Ritchie, D. A. 1997. Distribution, Diversity and Evolution of the Bacterial Mercury Resistance (Mer) Operon. FEMS Microbiology Reviews, Vol. 19 No. 4. Pages 239–262
  33. Priyadarshani, I., Sahu, D., and Rath, B. 2012. Microalgal Bioremediation : Current Practices and Perspectives. Journal of Biochemical Technology, Vol. 3 No. 3. Pages 299–304
  34. Robinson, J. B., and Tuovinen, O. H. 1984. Mechanisms of Microbial Resistance and Detoxification of Mercury and Organomercury Compounds: Physiological, Biochemical, and Genetic Analyses. Microbiological Reviews, Vol. 48 No. 2. Pages 95–124
  35. Rolfe, M. D., Rice, C. J., Lucchini, S., Pin, C., Thompson, A., Cameron, A. D. S., Hinton, J. C. D. 2012. Lag Phase is A Distinct Growth Phase that Prepares Bacteria for Exponential Growth and Involves Transient Metal Accumulation. Journal of Bacteriology, Vol. 194 No. 3. Pages 686–701
  36. Shanab, S., Essa, A., & Shalaby, E. 2012. Bioremoval Capacity of Three Heavy Metals by Some Microalgae Species (Egyptian Isolates). Plant Signaling and Behavior, Vol. 7 No. 3. Pages 392–399
  37. Soedarti, T., Tini, S., Sucipto, H., and Eko, P. K. 2017. Bioremediation of Mercury (II) Contaminated Seawater Using The Diatom Skeletonema costatum. KnE Life Sciences
  38. Summers, A. O. 1986. Organization, expression and evolution of genes for mercury resistance. Annu Rev Microbiol, Vol. 40. Pages 607–634
  39. Suresh Kumar, K., Dahms, H.-U., Won, E.-J., Lee, J.-S., and Shin, K.-H. 2015. Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, Vol. 113. Pages 329–352
  40. Von Canstein, H., Li, Y., Timmis, K. N., Deckwer, W. D., & Wagner-Döbler, I. 1999. Removal of mercury from chloralkali electrolysis wastewater by a mercury-resistant Pseudomonas putida strain. Applied and Environmental Microbiology, Vol. 65 No. 12. Pages 5279–5284
  41. Wagner-Döbler, I., Canstein, H. V., Li, Y., Timmis, K. N., & Deckwer, W. D. 2000. Removal of Mercury from Chemical Wastewater by Microorganisms in Technical Scale. J. Environ. Sci. Technol., Vol. 34 No. 21. Pages 4628–4634
  42. Walsh, B. 2013. Urban Wastelands: The World’s 10 Most Polluted Places
  43. Winarti, S., Neneng, L., Gunawan, Y. E., and Adam, C. 2020. Analysis of Genetic Profiles of Heavy Metal Phytememediator Plants From Gold Mining Areas. Vol. 4 No. 1. Pages 11–20
  44. Yamamoto, M., Fujishita, M., Hirata, A., and Kawano, S. 2004. Regeneration and Maturation of Daughter Cell Walls in the Autospore-Forming Green Alga Chlorella vulgaris (Chlorophyta, Trebouxiophyceae). J Plant Res, Vol. 117
  45. Yamamoto, M., Kurihara, I., and Kawano, S. 2005. Late Type of Daughter Cell Wall Synthesis in One of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta, Vol. 211
  46. Yulianti, F., Alumni, Yustiani, M., & Afiatun. 2007. Identifikasi Kandungan Merkuri (Hg) dalam Air dan Sedimen Sungai Kapuas Tengah di Daerah Pertambangan Emas Tanpa Ijin (PETI). Universitas Pasundan

Last update:

No citation recorded.

Last update:

No citation recorded.