skip to main content

Pengaruh Perubahan Curah Hujan terhadap Produktivitas Padi Sawah di Kalimantan Barat

1BMKG Stasiun Klimatologi Mempawah, Mempawah, Kalimantan Barat, Indonesia

2Program Studi Magister Ilmu Lingkungan, Program Pascasarjana, Universitas Tanjungpura, Indonesia

3Program Studi Agroteknologi, Jurusan Budidaya Pertanian, Fakultas Pertanian, Universitas Tanjungpura, Indonesia

4 Program Studi Agribisnis, Jurusan Sosial Ekonomi Pertanian, Fakultas Pertanian, Universitas Tanjungpura, Indonesia

View all affiliations
Received: 22 Apr 2021; Revised: 14 Jun 2021; Accepted: 25 Jun 2021; Available online: 30 Jun 2021; Published: 1 Aug 2021.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Variabilitas curah hujan sangat erat kaitannya dengan perubahan iklim di suatu wilayah dan analisisnya sangat berguna dalam mengukur ketersediaan air untuk pertanian khususnya padi sawah. Penelitian ini bertujuan menganalisis variabilitas curah hujan dan hubungan curah hujan tahunan terhadap produktivitas padi di Kalimantan Barat.  Lokasi penelitian difokuskan di wilayah Kabupaten Mempawah dan Kubu Raya dengan menggunakan data yang tersedia pada tahun 2000-2019. Analisis datanya menggunakan persamaan variabilitas dan dilanjutkan dengan analisis korelasi dan komposit. Hasil analisis menunjukkan bahwa variabilitas curah hujan tahunan di Mempawah dan Kubu Raya termasuk dalam kategori rendah. Nilai variabilitas bulanan menunjukkan rentang yang bervariasi dari rendah hingga ekstrem di setiap lokasi. El Nino memiliki dampak negatif yang kuat terhadap curah hujan pada periode Juni-Juli-Agustus (JJA) dan September-Oktober-November (SON), sedangkanLa Nina memiliki dampak positif yang kuat terhadap curah hujan pada periode Juni-Juli-Agustus. Pada periode Desember-Januari-Februari (DJF) dan Maret-April-Mei (MAM), El Nino (La Nina) memiliki efek terhadap peningkatan (pengurangan) curah hujan. Dipole Mode Positif memberikan dampak pengurangan curah hujan pada periode SON dan MAM. Dipole Mode Negatif memberikan dampak bervariasi pada curah hujan pada periode JJA, SON dan DJF. Hubungan signifikan antara curah hujan tahunan dan produktivitas padi hanya ditunjukkan di Sungai Kunyit dan Sungai Kakap. Hal ini mengindikasikan bahwa curah hujan tahunan secara umum tidak berpengaruh signifikan terhadap produktivitas padi di sebagian besar wilayah penelitian.

 

ABSTRACT

Rainfall variability is closely related to climate change in a particular region and it is useful in estimating the water availability for agriculture, especially lowland rice. This study examines the rainfall variability and correlation between annual rainfall and rice productivity in West Kalimantan. The research location is focused on the Mempawah and Kubu Raya districts in 2000-2019. The variability equation accompanied by correlation and composite analysis was used in the analysis. The result shows that the variability of annual rainfall in Mempawah and Kubu Raya falls in the low category. Monthly rainfall variability values mark a range that varies from low to extreme at each location. El Nino had a substantial negative impact on rainfall in the June-July-August (JJA) and September-October-November SON period. While, La Nina had a positive impact on rainfall only in the JJA period. In the December-January-February (DJF) and March-April-May (MAM) period, El Nino (La Nina) has an anomalous effect on increasing (reducing) rainfall. Positive Dipole Mode gives the negative impact in the SON dan MAM period. Negative Dipole Mode has a varied impact on rainfall in the JJA, SON and DJF periods. The significant corellation between annual rainfall and rice productivity was shown only at Sungai Kunyit and Sungai Kakap. This indicates that the annual rainfall generally has no significant effect on rice productivity in most areas.

Fulltext View|Download
Keywords: Iklim; Variabilitas; Curah Hujan; Padi; Korelasi

Article Metrics:

  1. Aldrian, E. (2016). Sistem Peringatan Dini Menghadapi Iklim Ekstrem. Sistem Peringatan Dini Menghadapi Iklim Ekstrem, 10(2), 79–90. https://doi.org/10.2018/jsdl.v10i2.7026
  2. Aldrian, E., & Dwi Susanto, R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950
  3. Apriyana, Y., & Kailaku, T. E. (2015). Variabilitas iklim dan dinamika waktu tanam padi di wilayah pola hujan monsunal dan equatorial. Prodising Seminar Nasional Masyarakat Biodiversitas Indonesia, 1(April), 366–372. https://doi.org/10.13057/psnmbi/m010233
  4. Ati, O. F., Stigter, C. J., & Oladipo, E. O. (2002). A comparison of methods to determine the onset of the growing season in northern Nigeria. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(6), 731–742
  5. Dewanti, Y. P., Muliadi, & Adriat, R. (2018). Pengaruh El Niño Southern Oscillation (ENSO) Terhadap Curah Hujan di Kalimantan Barat. Prisma Fisika, 6(3), 145–151
  6. Dong, Y., & Peng, C.-Y. Y. J. (2013). Principled missing data methods for researchers. SpringerPlus, 2(1), 222. https://doi.org/10.1186/2193-1801-2-222
  7. Eldridge, D. J., & Beecham, G. (2018). The Impact of Climate Variability on Land Use and Livelihoods in Australia’s Rangelands. In Climate Variability Impacts on Land Use and Livelihoods in Drylands (pp. 293–315). https://doi.org/10.1007/978-3-319-56681-8_14
  8. Indratmoko, S., Harmantyo, D., & Kusratmoko, E. (2017). Variabilitas curah hujan di Kabupaten Kebumen. Jurnal Geografi Lingkungan Tropik, 1(1), 29–40. https://doi.org/10.7454/jglitrop.v1i1.5
  9. Johnson, J. A. (2012). Assessing the impact of climate change in Borneo. Washington: World Wildlife Fund, 1–109
  10. King, A. D., Karoly, D. J., & van Oldenborgh, G. J. (2016). Climate change and El Niño increase likelihood of Indonesian heat and drought. Bulletin of the American Meteorological Society, 97(12), S113–S117. https://doi.org/10.1175/BAMS-D-16-0164.1
  11. Lu, B., & Ren, H. (2020). What caused the extreme Indian Ocean Dipole event in 2019? Geophysical Research Letters, e2020GL087768
  12. McBride, J. L., Haylock, M. R., & Nicholls, N. (2003). Relationships between the maritime continent heat source and the El Niño-Southern oscillation phenomenon. Journal of Climate, 16(17), 2905–2914. https://doi.org/10.1175/1520-0442(2003)016<2905:RBTMCH>2.0.CO;2
  13. Naylor, R. L., Battisti, D. S., Vimont, D. J., Falcon, W. P., & Burke, M. B. (2007). Assessing risks of climate variability and climate change for Indonesian rice agriculture. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7752–7757. https://doi.org/10.1073/pnas.0701825104
  14. Novi, M. B., Muliadi, & Adriat, R. (2018). Pengaruh ENSO dan Dipole Mode Terhadap Curah Hujan di Kota Pontianak. Prisma Fisika, 6(3), 210–213
  15. Pribadi, Y. (2012). Variabilitas curah Hujan dan Pergeseran Musim di Wilayah Banten Sehubungan dengan Variasi Suhu Muka Laut Perairan Indonesia, Samudera Pasifik dan Samudera Hindia. Universitas Indonesia
  16. Qian, J. H., Robertson, A. W., & Moron, V. (2013). Diurnal cycle in different weather regimes and rainfall variability over borneo associated with ENSO. Journal of Climate, 26(5), 1772–1790. https://doi.org/10.1175/JCLI-D-12-00178.1
  17. Rochdiani, D., Kusno, K., & Saefudin, B. R. (2017). Risiko Perubahan Iklim Serta Pengaruhnya Terhadap Pendapatan Petani Usahatani Padi Di Jawa Barat. Prosiding Seminar Nasional Lembaga Penelitian Universitas Islam Riau Mitigasi Dan Strategi Adaptasi Dampak Perubahan Iklim Di Indonesia, Pekanbaru, 263–271
  18. Ronchail, J., Cochonneau, G., Molinier, M., Guyot, J.-L., De Miranda Chaves, A. G., Guimarães, V., & de Oliveira, E. (2002). Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. International Journal of Climatology, 22(13), 1663–1686. https://doi.org/https://doi.org/10.1002/joc.815
  19. Salimun, E., Tangang, F., Juneng, L., Behera, S. K., & Yu, W. (2014). Differential impacts of conventional El Niño versus El Niño Modoki on Malaysian rainfall anomaly during winter monsoon. International Journal of Climatology, 34(8), 2763–2774. https://doi.org/https://doi.org/10.1002/joc.3873
  20. Salman, R. S. (2016). Impact Of El Nino Phenomenon On Paddy Field At Seram Island ( Case Study : El Nino 2015-2016 ). International Conference on Climate Change, 248–254. https://doi.org/10.15608/iccc.y2016.570
  21. Shaman, J. (2014). The Seasonal Effects of ENSO on European Precipitation: Observational Analysis. Journal of Climate, 27(17), 6423–6438. https://doi.org/10.1175/JCLI-D-14-00008.1
  22. Sipayung, S. B. (2005). Dampak Variabilitas Iklim Terhadap Produksi Pangan di Sumatera. Jurnal Sains Dirgantara, 2, 111–126
  23. Slamet, S., Hariadi, T. E., Ratag, M. A., & Adiningsih, E. S. (2011). Analisis Curah Hujan dan Suhu Untuk Menyusun Pola Tanam Tanaman Pangan di Jawa Barat. Majalah LAPAN, 3(2)
  24. Stewart, J. I. (1991). Principles and performance of response farming. Climatic Risk in Crop Production: Models and Management for the Semiarid Tropics and Subtropics. Proceedings of an International Symposium, 361–382. Brisbane: CAB International
  25. Sudarma, I. M., & As-syakur, A. R. (2018). Dampak Perubahan Iklim Terhadap Sektor Pertanian Di Provinsi Bali. SOCA: Jurnal Sosial Ekonomi Pertanian, 12(1), 87. https://doi.org/10.24843/soca.2018.v12.i01.p07
  26. Sudarman, G. G. (2015). Variabilitas Spasial Dan Temporal Curah Hujan Dan Dampaknya Terhadap Tanaman Pangan (Padi) Di Jawa Barat. Universitas Indonesia
  27. Supari, Tangang, F., Salimun, E., Aldrian, E., Sopaheluwakan, A., & Juneng, L. (2018). ENSO modulation of seasonal rainfall and extremes in Indonesia. Climate Dynamics, 51(7–8), 2559–2580. https://doi.org/10.1007/s00382-017-4028-8
  28. Surmaini, E., & Runtunuwu, E. (2011). Upaya sektor Pertanian dalam Menghadapi Perubahan Iklim. Jurnal Litbang Pertanian, 30(1), 1–7. https://doi.org/10.21082/jp3.v30n1.2011.p1-7
  29. Susanti, E., Surmaini, E., & Estiningtyas, W. (2020). Parameter Iklim sebagai Indikator Peringatan Dini Serangan Hama Penyakit Tanaman. Jurnal Sumberdaya Lahan, 12(1), 59–70. https://doi.org/10.21082/jsdl.v12n1.2018.59-70
  30. Tangang, F., Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A. F., & Juneng, L. (2017). Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events. International Journal of Climatology, 37(S1), 696–716. https://doi.org/https://doi.org/10.1002/joc.5032
  31. Tarsito, S. (2014). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Alfabeta. Bandung
  32. Trenberth, K. E. (2019). El Niño southern oscillation (ENSO). In Encyclopedia of Ocean Sciences. https://doi.org/10.1016/B978-0-12-409548-9.04082-3
  33. Wardani, N. (2014). Perubahan Iklim dan Pengaruhnya Terhadap Serangga Hama. Prosiding Seminar Nasional Agroinovasi Spesifik Lokasi Untuk Ketahanan Pangan Pada Era Masyarakat Ekonomi ASEAN, (Hunten 1993), 783–791
  34. Yuggotomo, M. E., & Ihwan, A. (2014). Pengaruh Fenomena El Niño Southern Oscillation dan Dipole Mode Terhadap Curah Hujan di Kabupaten Ketapang. Positron, 4(2), 35–39
  35. Yuliyanto, & Sudibyakto. (2016). Kajian Dampak Variabilitas Curah Hujan Terhadap Produktivitas Padi Sawah Tadah Hujan Di Kabupaten Magelang. 4(1), 64–75

Last update:

  1. Proceedings of the International Conference on Economics and Business Studies (ICOEBS-22-2)

    Mita Iskhomiya, Nur Andriyani. Advances in Economics, Business and Management Research, 247 , 2024. doi: 10.2991/978-94-6463-204-0_42
  2. Machine Learning-Based Daily Rainfall Data Gap-Filling Method: A Case Study of DKI Jakarta Area

    Muhammad Fajar Asshidiqi, Adhi Harmoko Saputro. 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 2023. doi: 10.1109/ICE3IS59323.2023.10335339
  3. Climate change adaptation in red rice farming of Segreng and Inpari 24 varieties in Gunungkidul District, Yogyakarta, Indonesia

    Lestari Rahayu, Suryani E. Putri, Zuhud Rozaki, Triyono, A. Suryana, T. Chancellor, K.H. Ryu, M. Gemma, S.M. Pasaribu. BIO Web of Conferences, 119 , 2024. doi: 10.1051/bioconf/202411905005

Last update: 2024-11-11 18:10:03

No citation recorded.