skip to main content

Effect of Land Clearing Activity on Environmental and Arthropods Diversity (Case Study: Jati Agung, Lampung)

1Department of Biosystems Engineering, Institut Teknologi Sumatera, South Lampung, Indonesia

2Department of Chemical Engineering, Institut Teknologi Bandung, Bandung, Indonesia

Received: 27 Apr 2021; Revised: 6 Jul 2021; Accepted: 10 Jul 2021; Published: 1 Aug 2021; Available online: 16 Jul 2021.
Editor(s): H Hadiyanto

Citation Format:

Agricultural activity relies on soil as their growth media. Besides agricultural activity, other living species also needs soil as their ecosystem. However, the biodiversity and environmental factor are often neglected in agricultural activity. Therefore, the investigation of environmental and biodiversity changes is important. In this study, the environmental parameter and biodiversity changes was investigated in area after land clearing activity. The pH was increased from in 3 times measurement. Besides, the soil temperature and air temperature was also increased in 3 times measurement between pre- and post-treatment. The soil temperature ranges from 26.2 oC to 33.2 oC in pre-treatment and 27.6 oC to 31.8 oC in post-treatment. The air temperature was observed ranges from 27.96 oC to 34.3 oC in pre-treatment and 28.36 oC to 34.56 oC in post-treatment. Measurement of RH was resulted ranges from 61.2% to 75.4% in pre-treatment and 61.4% to 74.8% in pre-treatment. The land is proposed become paddy field for next step land processing. As result, the diversity index was decreased in pre- and post-treatment. The Shannon diversity index was decreased from 0.81 to 0.72. Similarly, the Simpson diversity index was also decreased from 1.94 to 1.77. Meanwhile, the evenness index was increased from 0.58 to 0.65. These results suggested for farmer to process the land as soon as possible after land clearing process, if they want to form paddy field from pasture land.


Kegiatan pertanian bergantung pada tanah sebagai media tumbuh suatu tanaman. Selain kegiatan pertanian, organisme hidup lain juga bergantung terhadap tanah sebagai ekosistem. Namun, seringkali biodiversitas dan faktor lingkungan diabaikan dalam kegiatan pertanian. Oleh karenanya, indentifikasi perubahan lingkungan dan biodiversitas sanget perlu dilakukan. Dalam penelitian ini, perubahan parameter lingkungan dan biodiversitas diamati sebelum dan sesudah aktivitas land clearing. Hasil pengamatan menunjukkan, pH tanah, suhu tanah dan suhu lingkungan meningkat dalam 3 kali pengukuran dari sebelum ke sesudah aktivitas land clearing. Suhu tanah berkisar 26.2 oC-33.2 oC pada sebelum kegiatan land clearing dan 27.6 oC-31.8 oC setelah aktivitas land clearing. Suhu lingkungan ditemukan berkisar  27.96 oC-34.3 oC pada kegiatan sebelum land clearing dan 28.36 oC-34.56 oC setelah kegiatan land clearing. Hasil pengukuran RH lingkungan ditemukan berkisar 61.2%-75.4% pada kegiatan sebelum land clearing dan 61.4%-74.8% setelah kegiatan land clearing. Sementara itu, index diversitas ditemukan menurun setelah aktivitas land clearing. Nilai Shannon diversity index ditemukan menurun setelah aktivitas land clearing dari 0.81-0.72. Pola serupa ditemukan pada nilai Simpson diversity index, dimana terjadi penurunan dari 1.94 menjadi 1.77. Nilai evenness index meningkat dari 0.58 menjadi 0.65. Berdasarkan hasil tersebut dapat disarankan ke petani untuk segera mengolah lahan tersebut setelah kegiatan land clearing untuk menghindari terjadinya pertumbuhan kembali vegetasi, serta perubahan parameter lingkungan dan biodiversitas.

Fulltext View|Download
Keywords: Biodiversity; Land Clearing; Soil; Environmental

Article Metrics:

Article Info
Section: Research Article
Language : EN
  1. Arai-Sanoh, Y., Ishimaru, T., Ohsumi, A., & Kondo, M. (2010). Effects of soil temperature on growth and root function in rice. Plant Production Science, 13(3), 235-242
  2. Cahyani, D., Haryanto, A., Putra, G., Fil’aini, R., & Marpaung, D. (2019). Life cycle assessment of biogas digester in small scale tapioca industry. Paper presented at the IOP Conference Series: Earth and Environmental Science
  3. Darmawan, A., Wijayanti, H., & Ariyanti, Y. (2019). Arthropod diversity loss due to monoculture practice in south lampung, indonesia. BioWallacea Jurnal Ilmiah Ilmu Biologi, 5(2), 69-73
  4. Folgarait, P. J. (1998). Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity & Conservation, 7(9), 1221-1244
  5. Geisen, S., Briones, M. J., Gan, H., Behan-Pelletier, V. M., Friman, V.-P., de Groot, G. A., Hannula S. E., Lindo Z., Philippot L., Tiunov A. V., Wall D. H. (2019). A methodological framework to embrace soil biodiversity. Soil Biology and Biochemistry, 136, 107536
  6. Lingbeek, B. J., Higgins, C. L., Muir, J. P., Kattes, D. H., & Schwertner, T. W. (2017). Arthropod diversity and assemblage structure response to deforestation and desertification in the Sahel of western Senegal. Global ecology and conservation, 11, 165-176
  7. Mackay, W. P., Silva, S., Lightfoot, D. C., Pagani, M. I., & Whitford, W. G. (1986). Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. American Midland Naturalist, 45-56
  8. Marpaung, D. S. S., Indriyani, A., Fahadha, R. U., Mardiono, I., & Haryanto, A. (2020). Determination of Aflatoxin Contamination Risk along Maize Distribution Chain (Case study: A Maize Enterprise in East Lampung). Paper presented at the IOP Conference Series: Earth and Environmental Science
  9. Onwuka, B., & Mang, B. (2018). Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res, 8, 34-37
  10. Penick, C. A., & Tschinkel, W. R. (2008). Thermoregulatory brood transport in the fire ant, Solenopsis invicta. Insectes Sociaux, 55(2), 176-182
  11. Philpott, S. M., & Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological entomology, 31(4), 369-377
  12. Previati, E., Fano, E. A., & Leis, M. (2007). Arthropods biodiversity in agricultural landscapes: effects of land use and anthropization. Italian Journal of Agronomy, 135-142
  13. Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L., & Kaplan, I. (2011). Insect ecology: behavior, populations and communities: Cambridge University Press
  14. Sangha, K. K., Jalota, R. K., & Midmore, D. J. (2005). Impact of tree clearing on soil pH and nutrient availability in grazing systems of central Queensland, Australia. Soil Research, 43(1), 51-60
  15. Sendra, A., Jiménez‐Valverde, A., Selfa, J., & Reboleira, A. S. P. (2021). Diversity, ecology, distribution and biogeography of Diplura. Insect Conservation and Diversity
  16. Soulé, M. E., Mackey, B. G., Recher, H. F., Williams, J. E., Woinarski, J., Driscoll, D., Dennison W. C., Jones M. E. (2004). The role of connectivity in Australian conservation. Pacific Conservation Biology, 10(4), 266-279
  17. Vié, J.-C., Hilton-Taylor, C., & Stuart, S. N. (2009). Wildlife in a changing world: an analysis of the 2008 IUCN Red List of threatened species: IUCN
  18. Wang, M., Fu, S., Xu, H., Wang, M., & Shi, L. (2018). Ecological functions of millipedes in the terrestrial ecosystem. Biodiversity Science, 26(10), 1051

Last update:

No citation recorded.

Last update:

No citation recorded.