skip to main content

Penyisihan Material Organik dan Nitrogen dengan Proses Aerasi Menggunakan Microbubble Generator (MBG) pada Instalasi Pengolahan Air Limbah (IPAL) Asrama

1agister Teknik Sistem, Universitas Gadjah Mada, Jalan Teknika Utara No.3 Kabupaten Sleman, Yogyakarta 55281, Indonesia

2Magister Teknik Sistem, Universitas Gadjah Mada, Jalan Teknika Utara No.3 Kabupaten Sleman, Yogyakarta 55281, Indonesia

3Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada Jalan Grafika Kampus No.2 Kabupaten Sleman, Yogyakarta 55284, Indonesia

4 Departemen Teknik Sipil dan Lingkungan, Universitas Gadjah Mada Jalan Grafika Kampus No.2 Kabupaten Sleman, Yogyakarta 55284 Indonesia, Indonesia

View all affiliations
Received: 13 Oct 2021; Revised: 24 Nov 2021; Accepted: 2 Dec 2021; Available online: 15 Dec 2021; Published: 1 Jan 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Sebuah Instalasi Pengolahan Air Limbah (IPAL) di asrama mahasiswi UGM, Yogyakarta memiliki unit reaktor yang terdiri dari ekualisasi, aerasi 1, aerasi 2 dan clarifier dengan proses aerasi secara intermiten menggunakan Microbubble Generator (MBG) dengan fase aerasi dan tanpa aerasi masing-masing selama 15 menit. IPAL tersebut dibangun sebagai upaya dalam memenuhi standar Green Building bagi bangunan lama asrama di UGM untuk mengolah air limbah grey water. Hasil olahan air limbah akan dimanfaatkan di lingkungan asrama. Selama 208 hari beroperasi, kajian mengenai performa IPAL belum pernah dilakukan. Oleh karena itu, diperlukan kajian untuk mengetahui performa dan konsumsi energi pada IPAL dalam menyisihkan parameter pencemar berupa COD, nitrogen dan fosfat. Kajian dilakukan selama 81 hari pengamatan dengan menguji parameter kualitas air limbah pada setiap unit pengolahan. Parameter COD dan amonia telah memenuhi baku mutu Peraturan Menteri Lingkungan Hidup dan Kehutanan No. 68 Tahun 2016 tentang Baku Mutu Air Limbah Domestik, sedangkan parameter fosfat masih belum memenuhi baku mutu Peraturan Daerah D.I.Y. No.7 Tahun 2016 mengenai kegiatan IPAL Komunal. Hasil pengamatan pada performa IPAL, menunjukkan kedua tangki aerasi memiliki performa yang hampir sama, namun keberadaan tangki aerasi 2 tidak memiliki pengaruh yang signifikan dalam menyisihkan parameter pencemar. Pada tangki aerasi 1, efisiensi penyisihan COD mencapai rata-rata sebesar 73,6±17,46%, penyisihan PO4-P sebesar 39,12±14,96%, penyisihan total nitrogen sebesar 56,15±19,6%, efisiensi nitrifikasi sebesar 73,1±20.07% dan efisiensi denitrifikasi sebesar 61,72±27,48%. Total konsumsi energi pada IPAL dengan proses aerasi intermiten, dengan debit rerata 537,84 l/hari sebesar 14,12 kWh/m3 dan biaya sebesar Rp. 20.414/m3. Urutan konsumsi energi terbesar adalah penyisihan fosfat sebesar 5,10 kWh/gPO4-P, kemudian penyisihan amonia sebesar 1,79 kWh/gNH3-N, penyisihan TN sebesar 1,95 kWh/gTN dan penyisihan COD sebesar 0,45 kWh/gCOD.

 

ABSTRACT

A Wastewater Treatment Plant (WWTP) in the student dormitory of UGM, Yogyakarta has a reactor unit consists of an equalization, aeration 1, aeration 2, and clarifier with intermittent aeration process using a Microbubble Generator (MBG) with or without aeration for 15 minutes each. The WWTP was built as an effort to meet the Green Building standards for the old dormitory at UGM to make better process of grey water. The processed wastewater will be used for the dormitory environment. Operated for 208 days, there was no former studies for the WWTP.  Therefore, a study is needed to determine performance and energy consumption of the WWTP in removing pollutant parameters consisting of COD, nitrogen and phosphate. The study was carried out for 81 days of observation by testing the wastewater quality parameters in each treatment unit. COD and ammonia parameters have met the quality standards of the Regulation of the Minister of Environment and Forestry No. 68 of 2016 concerning Domestic Wastewater Quality Standards, while phosphate doesn’t meet the quality standards of Regional Regulation D.I.Y. No. 7 of 2016 concerning Communal WWTP Activities. Results shows the performance from two aeration tanks are almost the same, but the existence of aeration tank 2 doesn’t have a significant effect. The results in aeration tank 1 showed the COD removal efficiency reached an average of 73.6±17.46%, PO4-P removal 39.12±14.96%, total nitrogen removal 56.15±19.6%, the nitrification efficiency 73.1±20.07%  the denitrification efficiency 61.72±27.48%. The total energy consumption with intermittent aeration process with an average discharge of 537.84 l/day is 14.12 kWh/m3 and a cost of Rp. 20,414/m3 with the largest energy use being phosphate removal at 5.10 kWh/gPO4-P, then ammonia removal at 1.79 kWh/gNH3-N, TN removal at 1.95 kWh/gTN and COD removal at 0.45 kWh/gCOD.

Fulltext View|Download
Keywords: grey water; microbubble generator; aerasi intermiten; green building; konsumsi energi

Article Metrics:

  1. Ajit, K. (2016). A Review on Grey Water Treatment and Reuse. International Research Journal of Engineering and Technology, 2395–56. https://www.irjet.net/archives/V3/i5/IRJET-V3I5551.pdf
  2. Ayu, C., Anggraeni, D., Kurniasari, S., & Ismail, T. (2002). Penggunaan Membran Bioreaktor ( Mbr ) Pada Activated Sludge Dalam Pengolahan Limbah Cair Industri. 2309105004
  3. Bodík, I., & Kubaská, M. (2013). Energy and sustainability of operation of a wastewater treatment plant. Environment Protection Engineering, 39(2), 15–24. https://doi.org/10.5277/EPE130202
  4. Cassidy, J., Silva, T., Semião, N., Ramalho, P., Santos, A., & Feliciano, J. (2020). Improving wastewater treatment plants operational efficiency and effectiveness through an integrated performance assessment system. H2Open Journal, 3(1), 276–287. https://doi.org/10.2166/h2oj.2020.007
  5. Derco, J., Urminská, B., Kovács, A., & Šimkovič, K. (2017). Biological nutrient removal in an intermittently aerated bioreactor. Chemical and Biochemical Engineering Quarterly, 31(2), 179–185. https://doi.org/10.15255/CABEQ.2016.1026
  6. Febriyana, R. F. (2014). Prototype Unit Pengolahan Limbah (Activated Sludge Biosand Filter Reactor) Untuk Menurunkan Kadar Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD) Dan Total Suspended Solid (TSS) Pada Limbah Cair Tahu. In Implementation Science (Vol. 39, Issue 1). https://doi.org/10.4324/9781315853178
  7. Gou, J., Hong, C. U., Deng, M., Chen, J., Hou, J., Li, D., & He, X. (2019). Effect of carbon to nitrogen ratio on water quality and community structure evolution in suspended growth bioreactors through biofloc technology. Water (Switzerland), 11(8). https://doi.org/10.3390/w11081640
  8. Grady, L., Daigger, G., & Lim, H. (1999). Biological Wastewater Treatment, 2nd editon. Marcel Dekker. Inc
  9. Gürtekin, E. (2019). Effect of Intermittent Aeration and Step-Feed on Nitrogen Removal Performance in Anoxic-aerobic Sequencing Batch Reactor. Natural and Engineering Sciences, 8(5), 55
  10. Karches, T. (2018). Effect of internal recirculation on reactor models in wastewater treatment. WIT Transactions on Ecology and the Environment, 228(May), 145–153. https://doi.org/10.2495/WP180151
  11. Kolb, M., Bahadir, M., & Teichgräber, B. (2017). Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate. Water Research, 122, 645–654. https://doi.org/10.1016/j.watres.2017.06.034
  12. Lang, Z., Zhou, M., Zhang, Q., Yin, X., & Li, Y. (2020). Comprehensive treatment of marine aquaculture wastewater by a cost-effective flow-through electro-oxidation process. Science of the Total Environment, 722, 137812. https://doi.org/10.1016/j.scitotenv.2020.137812
  13. Li, Z., Zou, Z., & Wang, L. (2019). Analysis and Forecasting of the Energy Consumption in Wastewater Treatment Plant. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/8690898
  14. Liu, C., Tanaka, H., Ma, J., Zhang, L., Zhang, J., Huang, X., & Matsuzawa, Y. (2012). Effect of microbubble and its generation process on mixed liquor properties of activated sludge using Shirasu porous glass (SPG) membrane system. Water Research, 46(18), 6051–6058. https://doi.org/10.1016/j.watres.2012.08.032
  15. Metcalf, & Eddy. (2003). Metcalf & Eddy, Inc. Wastewater Engineering Teatment and Reuse. In Journal of Wastewater Engineering (p. 4th edition)
  16. Mirbagheri, S. A., Ebrahimi, M., & Mohammadi, M. (2014). Optimization method for the treatment of Tehran petroleum refinery wastewater using activated sludge contact stabilization process. Desalination and Water Treatment, 52(1–3), 156–163. https://doi.org/10.1080/19443994.2013.794105
  17. Montgomery, D. C. A. S. U. (2017). Design and Analysis of Experiments Ninth Edition. www.wiley.com/go/permissions.%0A https://lccn.loc.gov/2017002355
  18. Octy, R., Budhijanto, W., Kimia, D. T., Teknik, F., & Mada, U. G. (2015). Penguraian Limbah Organik Secara Aerobik Dengan Aerasi Menggunakan Microbubble Generator Dalam Kolam Dengan Imobilisasi Bakteri. Jurnal Rekayasa Proses, 9(2),58–64. https://doi.org/10.22146/jrekpros.31035
  19. Rizki, N., Sutrisno, E., & Sumiyati, S. (2017). Penurunan Konsentrasi COD Dan TSS Pada Limbah Cair Tahu Dengan Teknologi Kolam (Pond) - Biofilm Menggunakan Media Biofilter Jaring Ikan Dan Biobal. Psychology Applied to Work: An Introduction to Industrial and Organizational Psychology, Tenth Edition Paul, 53(9), 1689–1699
  20. Suharto. (2011). Limbah Kimia dalam Pencemaran Udara dan Air (Issue 321, pp. 313–317). Andi
  21. Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., & Kobayashi, D. (2011). Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chemical Engineering Science, 66(14), 3172–3179. https://doi.org/10.1016/j.ces.2011.02.043
  22. Torrijos, V., Gonzalo, O. G., Trueba-Santiso, A., Ruiz, I., & Soto, M. (2016). Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment. Water Research, 103, 92–100. https://doi.org/10.1016/j.watres.2016.07.028
  23. Uggetti, E., Hughes-Riley, T., Morris, R. H., Newton, M. I., Trabi, C. L., Hawes, P., Puigagut, J., & García, J. (2016). Intermittent aeration to improve wastewater treatment efficiency in pilot-scale constructed wetland. Science of the Total Environment, 559, 212–217. https://doi.org/10.1016/j.scitotenv.2016.03.195
  24. von Sperling, M. (2007). Wastewater Characteristric, Treatment and Disposal (Vol. 1)
  25. Zhang, X., Zheng, S., Xiao, X., Wang, L., & Yin, Y. (2017). Simultaneous nitrification/denitrification and stable sludge/water separation achieved in a conventional activated sludge process with severe filamentous bulking. Bioresource Technology, 226, 267–271. https://doi.org/10.1016/j.biortech.2016.12.047
  26. Zhao, L., Dai, T., Qiao, Z., Sun, P., Hao, J., & Yang, Y. (2020). Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse. Process Safety and Environmental Protection, 133(92), 169–182. https://doi.org/10.1016/j.psep.2019.11.014
  27. Zhuang, L. L., Yang, T., Zhang, J., & Li, X. (2019). The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresource Technology, 293(July). https://doi.org/10.1016/j.biortech.2019.122086

Last update:

No citation recorded.

Last update:

No citation recorded.