skip to main content

Teknologi Biodrying untuk Meningkatkan Nilai Kalor Sampah dan Proyeksinya sebagai Bahan Bakar Alternatif pada Tahun 2028

Departemen Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro, Indonesia

Received: 28 Sep 2021; Revised: 11 Nov 2021; Accepted: 5 Dec 2021; Available online: 18 Dec 2021; Published: 1 Jan 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Timbulan municipal solid waste (MSW) akibat industrialisasi, urbanisasi dan pertumbuhan penduduk telah menimbulkan masalah tentang kerusakan lingkungan dan bahaya kesehatan manusia, terutama di negara-negara berkembang. MSW yang mudah terbakar memiliki kandungan proksimat yang dapat dimanfaatkan sebagai energi alternatif melalui recovery energi dengan metode bio-drying. Penelitian ini bertujuan untuk mengolah MSW menggunakan biodrying dan menghitung potensi MSW sebagai bahan bakar alternative. MSW dari Jatibarang landfill diolah dalam reaktor bio-drying dengan debit aerasi sebesar 6 L/m selama 21 hari. Hasil penelitian menunjukkan suhu puncak mencapai 58⁰C pada hari pertama. Kadar air mengalami penurunan hingga 44,65% pada hari ke-21. Nilai kalor mengalami kenaikan 28% dengan nilai tertinggi sebesar 6.049 kal/gr. Produk biodrying dari MSW Jatibarang landfill memiliki potensi 138% sebagai bahan bakar industry.  Potensi penggunaan produk biodrying 100% tercapai pada tahun 2030 bulan ke-6 sebesar 638.367 ton.

ABSTRACT

Municipal solid waste (MSW) generated as a result of industrialization, urbanization, and population growth has created problems of environmental damage and human health hazards, especially in developing countries. Combustible MSW contains proximate which can be utilized as alternative energy through energy recovery by bio-drying method. This study aims to process MSW using biodrying and calculate the potential of MSW as an alternative fuel. MSW from TPA Jatibarang is processed in a bio-drying reactor with an aeration flowrate of 6 L/m for 21 days. The results showed that the peak temperature reached 58⁰C on the first day. The water content decreased to 44.65% on the 21st day. The calorific value increased by 28% with the highest value of 6,049 cal/gr. Biodrying products from MSW Jatibarang landfill have 138% potential as industrial fuel. The potential use of 100% biodrying products is achieved in 2030 in the 6th month of 638,367 tons.

 

Fulltext View|Download
Keywords: biodrying, nilai kalor; limbah perkotaan; bahan bakar; energi

Article Metrics:

  1. Ab Jalil, N. A., Basri, H., Ahmad Basri, N. E., & Abushammala, M. F. M. (2016). Biodrying of municipal solid waste under different ventilation periods. Environmental Engineering Research, 21(2), 145–151. https://doi.org/10.4491/eer.2015.122
  2. Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. In Egyptian Journal of Petroleum (Vol. 27, Issue 4, pp. 1275–1290). Elsevier. https://doi.org/10.1016/j.ejpe.2018.07.003
  3. Adani, F., Baido, D., Calcaterra, E., & Genevini, P. (2002). The influence of biomass temperature on biostabilization-biodrying of municipal solid waste. Bioresource Technology, 83(3), 173–179. https://doi.org/10.1016/S0960-8524(01)00231-0
  4. Aminah, S., Sudarno, & Purwono. (2017). Pengolahan Sampah Organik Secara Biodrying Studi Kasus : Sayuran Kangkung. Jurnal Teknik Lingkungan, 6(1), 1–8
  5. Annisa, B. (2015). Asesmen Potensi Recovery Energi dari Sampah Perkotaan di TPA (Tempat Pembuangan Sampah Akhir) Sampah untuk Infrastruktur Persampahan Berkelanjutan. Annual Civil Engineering, 978-979–79, 978–979
  6. Badan Standarisasi Nasional, (2008). SNI -3242:2008 Pengelolaan Sampah di Permukiman. Badan Standarisasi Nasional, Bandung
  7. Bilgin, M., & Tulun, Ş. (2015). Biodrying for municipal solid waste: Volume and weight reduction. Environmental Technology (United Kingdom), 36(13), 1691–1697. https://doi.org/10.1080/09593330.2015.1006262
  8. Damanhuri, E. & Padmi, T., (2010). Diktat Kuliah TL-3104 : Pengelolaan Sampah. Edisi Semester I-2010/2011. Program Studi Teknik Lingkungan FTSL ITB, Bandung
  9. Direktorat Sumber Daya Energi, Mineral dan Pertambangan, (2016). Kajian Ketercapaian Target DMO Batubara Sebesar 60% Produksi Nasional pada Tahun 2019. BAPPENAS, Jakarta
  10. DLH Kota Semarang, (2017). Pengelolaan TPA Jatibarang. [Online] Available at: https://maritim.go.id/konten/unggahan/2017/09/Gunawan_Saptogiri_Env_Agency_of_Semarang.pdf [Diakses 20 September 2018]
  11. Haryadi, H., & Suciyanti, M. (2018). Analisis Perkiraan Kebutuhan Batubara Untuk Industri Domestik Tahun 2020-2035 Dalam Mendukung Kebijakan Domestic Market Obligation Dan Kebijakan Energi Nasional. Jurnal Teknologi Mineral Dan Batubara, 14(1), 59. https://doi.org/10.30556/jtmb.vol14.no1.2018.192
  12. He, P., Zhao, L., Zheng, W., Wu, D., & Shao, L. (2013). Energy Balance of a Biodrying Process for Organic Wastes of High Moisture Content: A Review. Drying Technology, 31(2), 132–145. https://doi.org/10.1080/07373937.2012.693143
  13. Johari, A., Hashim, H., Ramli, M., Jusoh, M., & Rozainee, M. (2011). Effects of fluidization number and air factor on the combustion of mixed solid waste in a fluidized bed. Applied Thermal Engineering, 31(11), 1861–1868. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2011.03.013
  14. KLHK RI, 2018. Sistem Pengelolaan Sampah Nasional. [Online] Available at: http://sipsn.menlhk.go.id/?q=3a-kompo sisisampah&field_f_wilayah_tid=1476&field_kat_kota_tid=All&field_periode_id_tid=2168 [Diakses 18 Oktober 2018]
  15. Lestari, D., Asy’ari, M. A., & Hidayatullah, R. (2016). Geokimia Batubara Untuk Beberapa Industri. Jurnal POROS TEKNIK, 8(1), 1–54
  16. Nedwell. (1999). Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiology Ecology, 30 2, 101–111
  17. Pradana, A. E., & Subowo, A. (2017). Studi Penanganan Sampah Di Tempat Pemrosesan Akhir Jatibarang Berdasarkan Peraturan Daerah Kota Semarang Nomor 6 Tahun 2012 Tentang Pengelolaan Sampah. Indonesian Journal of Public Policy and Management Review, 6, 68–79
  18. Purwono, P., Hadiwidodo, M., & Rezagama, A. (2016). Penerapan Teknologi Biodrying Dalam Pengolahan Sampah High Water Content Menuju Zero Leachate. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 13(2), 75. https://doi.org/10.14710/presipitasi.v13i2.75-80
  19. Putro, S., & Hartati, S. (2014). Setting Parameter Yang Optimal Pada Proses Pembriketan Limbah Biomassa Guna Mendapatkan Kadar Air Briket Minimal Dalam Menciptakan Energi Alternatif Yang Ekonomis Oleh : M-70 M-71. Simposium Nasional RAPI XIII - 2014 FT UMS, 70–76
  20. Sadaka, S., Vandevender, K., Costello, T., & Sharara, M. (2010). Partial Composting for Biodrying Organic Materials. https://doi.org/10.13140/2.1.4767.7123
  21. Santosa, S., & Soemarno, S. (2014). Peningkatan Nilai Kalor Produk Pada Produk Proses Bio-drying Sampah Organik. Indonesian Green Technology Journal, 3(1), 29–38
  22. Sembiring, L. A., Priyambada, I. B., Samudro, G., Lokahita, B., Wardhana, I. W., Hadiwidodo, M., & Syafrudin, S. (2018). Potensi Material Sampah Combustible pada Zona II TPA Jatibarang Semarang sebagai Bahan Baku RDF (Refuse Derived Fuel). Jurnal Teknik Mesin Mercu Buana, 7(1), 19–23. https://doi.org/10.22441/jtm.v7i1.2240
  23. Sen, R., & Annachhatre, A. P. (2015). Effect of air flow rate and residence time on biodrying of cassava peel waste Effect of air flow rate and residence time on biodrying of cassava peel waste Ranjit Sen and Ajit P . Annachhatre *. October
  24. Sharara, M., Sadaka, S., Costello, T., & VanDevender, K. (2012). Influence of Aeration Rate on the Physio-Chemical Characteristics of Biodried Dairy Manure - Wheat Straw Mixture. Applied Engineering in Agriculture, 28. https://doi.org/10.13031/2013.41489
  25. Sugni, M., Calcaterra, E., & Adani, F. (2005). Biostabilization-biodrying of municipal solid waste by inverting air-flow. Bioresource Technology, 96(12), 1331–1337. https://doi.org/10.1016/j.biortech.2004.11.016
  26. Tchobanoglous, G., & Kreith, F. (2002). Handbook of Solid Waste Management, Second Edition (2nd ed.). McGraw-Hill Education. https://www.accessengineeringlibrary.com/content/book/9780071356237
  27. Velis, C. A., Longhurst, P. J., Drew, G. H., Smith, R., & Pollard, S. J. T. (2009). Biodrying for mechanical-biological treatment of wastes: A review of process science and engineering. Bioresource Technology, 100(11), 2747–2761. https://doi.org/10.1016/j.biortech.2008.12.026
  28. Wardhani, A. K., Sutrisno, E., & Purwono, P. (2017). Pengaruh Variasi Debit Aerasi Terhadap Kadar Selulosa Dan Nilai Kalor Pada Metode Biodrying Municipal Solid Waste (Msw). Universitas Diponegoro
  29. Yuan, J., Zhang, D., Li, Y., Chadwick, D., Li, G., Li, Y., & Du, L. (2017). Effects of adding bulking agents on biostabilization and drying of municipal solid waste. Waste Management, 62, 52–60. https://doi.org/10.1016/j.wasman.2017.02.027
  30. Zaman, B., Oktiawan, W., Hadiwidodo, M., Sutrisno, E., & Purwono, P. (2018). Desentralisasi pengolahan limbah padat rumah tangga menggunakan teknologi biodrying. Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 1(3), 18–24. https://doi.org/10.36813/jplb.1.3.18-24

Last update:

No citation recorded.

Last update: 2025-01-21 05:21:23

No citation recorded.