skip to main content

Penilaian Tingkat Cemaran Logam Berat Pada Lahan Pertanian di Hulu Sungai Citarum, Jawa Barat

Balai Penelitian Lingkungan Pertanian, Kementerian Pertanian;, Indonesia

Received: 13 Jan 2022; Revised: 5 Mar 2022; Accepted: 6 Mar 2022; Available online: 29 Mar 2022; Published: 5 Jul 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Konsentrasi logam berat pada lahan pertanian sangat penting untuk dipantau karena berdampak pada lingkungan dan kesehatan masyarakat. Penelitian ini bertujuan untuk memberikan informasi mengenai tingkat kontaminasi logam berat pada lahan pertanian di Kabupaten Bandung (DAS Hulu Sungai Citarum) dengan menganalisis faktor kontaminasi, faktor resiko ekologi, indeks beban polusi dan tingkat akumulasi logam berat yang berasal dari sumber antrhopogenik. Penentuan titik pengambilan sampel tanah dilakukan secara grid pada satuan (unit) lahan pada peta penggunaan lahan. Pengambilan sampel tanah dilakukan dengan metode survey pada 273 titik lokasi. Sampel tanah dianalisis kandungan logam berat Pb, Cd, Cr, Co dan Ni, kemudian dianalisis pola sebaran dan kontaminasi tanahnya. Hasil penelitian menunjukkan bahwa nilai rata-rata konsentrasi logam Pb, Cd, Cr, Co dan Ni pada tanah masih berada di bawah batas kritis logam berat. Berdasarkan analisis kontaminasi dari faktor kontaminan (CF) dan potensi resiko ekologi (Er) menunjukkan bahwa konsentrasi logam Cd telah mencapai pada kategori sangat tercemar dan sangat berpotensi pada resiko ekologi. Tingkat pencemaran logam berat yang bersumber dari aktivitas anthropogenik menunjukkan kategori sedang hingga berat untuk logam Cd.

ABSTRACT

The concentration of heavy metals in agricultural land is very important to monitor because it has an impact on the environment and public health. This study aims to provide information on the level of heavy metal contamination on agricultural land in Bandung Regency (the upstream watershed of the Citarum River) by analyzing contamination factors, ecological risk factors, pollution load index, and the level of accumulation of heavy metals from anthropogenic sources. Determination of the point of soil sampling is done on a grid on land units on the land use map. Soil sampling was carried out by survey method at 273 location points. Soil samples were analyzed for the heavy metal content of Pb, Cd, Cr, Co, and Ni, then the distribution pattern and soil contamination were analyzed. The results showed that the average concentration of Pb, Cd, Cr, Co, and Ni in the soil was still below the critical limit for heavy metals. Based on the analysis of contamination from the contaminant factor (CF) and potential ecological risk (Er) it shows that the concentration of Cd metal has reached the category of highly polluted and has a high potential for ecological risk. The level of heavy metal pollution originating from anthropogenic activities shows a moderate to a heavy category for Cd.

Fulltext View|Download
Keywords: Lahan pertanian; Logam berat; Sungai Citarum

Article Metrics:

  1. Affum, A. O., Osae, S. D., Kwaansa-Ansah, E. E., & Miyittah, M. K. 2020. Quality assessment and potential health risk of heavy metals in leafy and non-leafy vegetables irrigated with groundwater and municipal-waste-dominated stream in the Western Region, Ghana. Heliyon, 6(12), e05829. https://doi.org/10.1016/j.heliyon.2020.e05829
  2. Agaton, M., Setiawan, Y., & Effendi, H. 2016. Land Use/Land Cover Change Detection in an Urban Watershed: A Case Study of Upper Citarum Watershed, West Java Province, Indonesia. Procedia Environmental Sciences, 33, 654–660. https://doi.org/10.1016/j.proenv.2016.03.120
  3. Alfaro, M. R., Montero, A., Ugarte, O. M., do Nascimento, C. W. A., de Aguiar Accioly, A. M., Biondi, C. M., & da Silva, Y. J. A. B. 2015. Background concentrations and reference values for heavy metals in soils of Cuba. Environmental Monitoring and Assessment, 187(1). https://doi.org/10.1007/s10661-014-4198-3
  4. Alloway, B. J. (1995). Heavy metal in soils. Blackie Academic and Profesional. New York
  5. Chen, H., Wang, L., Hu, B., Xu, J., & Liu, X. 2022. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China. Chemosphere, 289(September 2021), 133182. https://doi.org/10.1016/j.chemosphere.2021.133182
  6. Duan, W., Xu, C., Liu, Q., Xu, J., Weng, Z., Zhang, X., Basnet, T. B., Dahal, M., & Gu, A. 2020. Levels of a mixture of heavy metals in blood and urine and all-cause, cardiovascular disease and cancer mortality: A population-based cohort study. Environmental Pollution, 263. https://doi.org/10.1016/j.envpol.2020.114630
  7. Eviati dan Sulaeman. 2009. Petunjuk Teknis Edisi 2 Analisis Kimia Tanah, Tanaman, Air, dan Pupuk. Bogor: Balai Penelitian Tanah Bogor. http://balittanah.litbang.deptan.go.id. ISBN 978-602-8039-21-5
  8. Fei, X., Xiao, R., Christakos, G., Langousis, A., Ren, Z., Tian, Y., & Lv, X. 2019. Comprehensive assessment and source apportionment of heavy metals in Shanghai agricultural soils with different fertility levels. Ecological Indicators, 106(198). https://doi.org/10.1016/j.ecolind.2019.105508
  9. Gupta, N., Yadav, K. K., Kumar, V., Cabral-Pinto, M. M. S., Alam, M., Kumar, S., & Prasad, S. 2021. Appraisal of contamination of heavy metals and health risk in agricultural soil of Jhansi city, India. Environmental Toxicology and Pharmacology, 88(September). https://doi.org/10.1016/j.etap.2021.103740
  10. Hairan, M. H., Jamil, N. R., Looi, L. J., & Amal Azmai, M. N. 2021. The assessment of environmental flow status in Southeast Asian Rivers: A review. Journal of Cleaner Production, 295. https://doi.org/10.1016/j.jclepro.2021.126411
  11. Hakanson, L. 1980. An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res, 14 (8), 975–1001, https://doi.org/10.1016/0043-1354(80)90143-8
  12. Jiang, F., Ren, B., Hursthouse, A., Deng, R., & Wang, Z. 2019. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). In Environmental Science and Pollution Research (Vol. 26, Issue 16, pp. 16556–16567). https://doi.org/10.1007/s11356-019-04997-3
  13. Li, Q., Deng, Q., Fang, H., Yu, X., Fan, Z. M., Du, Z., Li, M., Tao, Q., Song, W., Zhao, B., Chen, C., Huang, R., Yuan, D., Gao, X., Li, B., Wang, C., & Wilson, J. P. 2022. Factors affecting cadmium accumulation in the soil profiles in an urban agricultural area. Science of the Total Environment, 807. https://doi.org/10.1016/j.scitotenv.2021.151027
  14. Lin, L., Chen, Y., Qu, L., Zhang, Y., & Ma, K. 2020. Cd heavy metal and plants, rather than soil nutrient conditions, affect soil arbuscular mycorrhizal fungal diversity in green spaces during urbanization. Science of the Total Environment, 726. https://doi.org/10.1016/j.scitotenv.2020.138594
  15. Mandal, S., Bhattacharya, S., & Paul, S. 2022. Assessing the level of contamination of metals in surface soils at thermal power area : Evidence from developing country ( India ). 4, 37–49. http://dx.doi.org/10.1016/j.enceco.2021.11.003
  16. McDowell, R. W., & Gray, C. W. 2022. Do soil cadmium concentrations decline after phosphate fertiliser application is stopped: A comparison of long-term pasture trials in New Zealand? Science of the Total Environment, 804. https://doi.org/10.1016/j.scitotenv.2021.150047
  17. Moe, I. R., Rizaldi, A., Farid, M., Moerwanto, A. S., & Kuntoro, A. A. 2018. The use of rapid assessment for flood hazard map development in upper citarum river basin. MATEC Web of Conferences, 229, 0–5. https://doi.org/10.1051/matecconf/201822904011
  18. Aleksandrov, P. A., Mirkov, I., Tucovic, D., Kulas, J., Zeljkovic, M., Popovic, D., Ninkov, M., Jankovic, S., & Kataranovski, M. 2021. Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunology Letters, 240(October), 106–122. https://doi.org/10.1016/j.imlet.2021.10.003
  19. Prabagar, S., Dharmadasa, R. M., Lintha, A., Thuraisingam, S., & Prabagar, J. 2021. Accumulation of heavy metals in grape fruit, leaves, soil and water: A study of influential factors and evaluating ecological risks in Jaffna, Sri Lanka. Environmental and Sustainability Indicators, 12, 100147. https://doi.org/10.1016/j.indic.2021.100147
  20. Putra, D. M. 2016. Kontribusi Industri Tekstil dalam Penggunaan Bahan Berbahaya dan Beracun Terhadap Rusaknya Sungai Citarum. Jurnal Hukum Lingkungan, 3, 132–152. https://doi.org/10.38011/jhli.v3i1.37
  21. Rachmaningrum, M., Wardhani, E., & Pharmawati, K. 2015. Konsentrasi Logam Berat Kadmium (Cd) pada Perairan Sungai Citarum Hulu Segmen Dayeuhkolot-Nanjung. Jurnal Online Institut Teknologi Nasional Februari, 3(1), 1–11. https://doi.org/10.26760/rekalingkungan.v3i1.%25p
  22. Rahi, A. A., Younis, U., Ahmed, N., Ali, M. A., Fahad, S., Sultan, H., Zarei, T., Danish, S., Taban, S., El Enshasy, H. A., Tamunaidu, P., Alotaibi, J. M., Alharbi, S. A., & Datta, R. 2021. Toxicity of Cadmium and nickel in the context of applied activated carbon biochar for improvement in soil fertility. Saudi Journal of Biological Sciences, xxxx. https://doi.org/10.1016/j.sjbs.2021.09.035
  23. Rahmawati, S., Margana, G., Yoneda, M., & Oginawati, K. 2013. Organochlorine Pesticide Residue in Catfish (Clarias sp.) Collected from Local Fish Cultivation at Citarum Watershed, West Java Province, Indonesia. Procedia Environmental Sciences, 17, 3–10. https://doi.org/10.1016/j.proenv.2013.02.005
  24. Saleh, S. M. K., Amer, A. T., & Al-Alawi, A. 2018. Potential ecological risk of heavy metals in surface sediments from the Aden coast, Southern Yemen. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT, 13(1). https://doi.org/10.9790/2402-1210024255
  25. Sisay, B., Debebe, E., Meresa, A., & Abera, T. 2019. Analysis of cadmium and lead using atomic absorption spectrophotometer in roadside soils of Jimma town. Journal of Analytical & Pharmaceutical Research, 8(4), 144–147. https://doi.org/10.15406/japlr.2019.08.00329
  26. Tang, B., Xu, H., Song, F., Ge, H., Chen, L., Yue, S., & Yang, W. 2022. Effect of biochar on immobilization remediation of Cd⁃contaminated soil and environmental quality. In Environmental Research (Vol. 204). https://doi.org/10.1016/j.envres.2021.111840
  27. Tomlinson, D.L., Wilson, J.G., Harris, C.R., Jeffrey, D.W. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Mar. Res. 33, 566–575
  28. Utami, R. R., Geerling, G. W., Salami, I. R. S., Notodarmojo, S., & Ragas, A. M. J. 2020. Environmental prioritization of pesticide in the Upper Citarum River Basin, Indonesia, using predicted and measured concentrations. Science of the Total Environment, 738. https://doi.org/10.1016/j.scitotenv.2020.140130
  29. Xiao, W., Lin, G., He, X., Yang, Z., & Wang, L. 2022. Interactions among heavy metal bioaccessibility, soil properties and microbial community in phyto-remediated soils nearby an abandoned realgar mine. Chemosphere, 286(July 2021). https://doi.org/10.1016/j.chemosphere.2021.131638
  30. Yang, A. M., Lo, K., Zheng, T. Z., Yang, J. L., Bai, Y. N., Feng, Y. Q., Cheng, N., & Liu, S. M. 2020. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Diseases and Translational Medicine, 6(4), 251–259. https://doi.org/10.1016/j.cdtm.2020.02.005

Last update:

No citation recorded.

Last update:

No citation recorded.