skip to main content

Transformasi Abu Vulkanik dan Limbah Seng menjadi Nanokomposit ZnO-SiO2 dan Aplikasinya untuk Degradasi Rhodamin B

1Setia Budi University, Indonesia

2Universitas Setia Budi, Indonesia

Received: 26 Mar 2022; Revised: 13 Jun 2022; Accepted: 1 Jul 2022; Available online: 30 Sep 2022; Published: 1 Oct 2022.
Editor(s): Budi Warsito

Citation Format:
Abstract
Rhodamine B is a non-biodegradable organic pollutant that is difficult to decompose by microorganisms. If it is possible to be degraded it will take a long time. The semiconductor used is ZnO using SiO2 host material. The reason for using SiO2 is that apart from high efficiency, there are also abundant raw materials because the eruption of Mount Merapi occurs regularly every 4 years. The high content of SiO2 in volcanic ash can be utilized and processed into silica gel through the formation of potassium silicate resulting from the reaction between SiO2 in volcanic ash and potassium hydroxide. In addition to the presence of abundant SiO2, ZnO sources from lathe workshop waste are also easily obtained. The manufacture of ZnO/SiO2 nanocomposites was carried out using the sol – gel method because it is easy and has high effectiveness. ZnO/SiO2 nanocomposite was applied as an adsorbent to degrade Rhodamine B. This study aims to determine the character of ZnO/SiO2 nanocomposite and to determine the best conditions for optimal degradation. Synthesis of ZnO/SiO2 nanocomposite based on volcanic ash and zinc waste resulted in a composite size with a size range of 100-200 nm and a uniform circular shape. The results of the FTIR test show that SiO is at a wavelength of 993.34 and 1109.07 cm-1, while ZnO is at a wavelength of 443.63 cm-1. The XRD results of ZnO/SiO2 nanocomposite are known to peak at 2𝜃, namely 30.42o, 31.56o, and 44.40o. The application of dye degradation on UV irradiation, as well as looking for pH, time, and concentration gave the maximum Rhodamine B degradation value. The results of this study indicate that the highest efficiency in decreasing the concentration of Rhodamine B was obtained at pH 3 with a contact time of 60 minutes and a concentration of Rhodamine B of 10 ppm. The degradation efficiency of Rhodamine B obtained under these conditions is 95.8690%. Based on the concentration variation data processing using the Langmuir isotherm equation, it is known that the adsorption capacity of Rhodamine B is 97.3458521%.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (532KB)    Indexing metadata
Keywords: Volcanic ash; zink waste; Nanocomposite ZnO/SiO2; rhodamine B

Article Metrics:

  1. Agusriyanti, S., & Artsanti, P. (2015). PEMANFAATAN ZEOLIT ALAM CIAMIS SEBAGAI PENGEMBAN FOTOKATALIS TiO 2 UNTUK FOTODEGRADASI ZAT WARNA RHODAMINE B THE APPLICATION OF NATURAL ZEOLITE FROM CIAMIS AS TiO 2 PHOTOCATALYST SUPPORT FOR RHODAMINE B DYE PHOTODEGRADATION. J.Sains Dasar, 4(1), 92–99
  2. Agustina, S. (2016). PROSES EKSTRAKSI SENG OKSIDA DARI SENG DROSS MENGGUNAKAN METODE HIDROMETALURGI SISTEM TERBUKA (EXTRACTION PROCESS OF ZINC OXIDE FROM ZINC DROSS USING HIDROMETALURGI METHODE OPEN SYSTEM). J Kimia Dan Kemasan, 103–108
  3. Al-Buriahi, A. K., Al-Gheethi, A. A., Senthil Kumar, P., Radin Mohamed, R. M. S., Yusof, H., Alshalif, A. F., & Khalifa, N. A. (2022). Elimination of rhodamine B from textile wastewater using nanoparticle photocatalysts: A review for sustainable approaches. Chemosphere, 287, 132162. https://doi.org/10.1016/J.CHEMOSPHERE.2021.132162
  4. Alle, M., Lee, S. H., & Kim, J. C. (2020). Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity. Journal of Materials Science & Technology, 41, 168–177. https://doi.org/10.1016/J.JMST.2019.11.003
  5. Arabi, M., Ostovan, A., Bagheri, A. R., Guo, X., Li, J., Ma, J., & Chen, L. (2020). Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta, 215, 120933. https://doi.org/10.1016/j.talanta.2020.120933
  6. Ardana, S. K. (2013). SINTESIS SILIKA-KITOSAN BEAD UNTUK MENURUNKAN KADAR ION Cd(II) DAN Ni(II) DALAM LARUTAN
  7. Ati, L., D.R, P., Yulianto, A., & Aji, M. P. (2017). Uji Efektivitas Ekstraksi Limbah Seng menjadi Seng Oksida(ZnO) dengan Metode Presipitasi. Jurnal Fisika, 7(2). https://doi.org/10.15294/JF.V7I2.13372
  8. Balasurya, S., Okla, M. K., Mohebaldin, A., AL-ghamdi, A. A., Abdel-Maksoud, M. A., Almunqedhi, B., AbdElgawad, H., Thomas, A. M., Raju, L. L., & Khan, S. S. (2022). Self-assembling of 3D layered flower architecture of BiOI modified MgCr2O4 nanosphere for wider spectrum visible-light photocatalytic degradation of rhodamine B and malachite green: Mechanism, pathway, reactive sites and toxicity prediction. Journal of Environmental Management, 308, 114614. https://doi.org/10.1016/J.JENVMAN.2022.114614
  9. Bhuvaneshwari, M., Kumar, D., Roy, R., Chakraborty, S., Parashar, A., Mukherjee, A., Chandrasekaran, N., & Mukherjee, A. (2017). Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. Aquatic Toxicology, 183, 63–75
  10. Bruton, T. A., Pycke, B. F. G., & Halden, R. U. (2015). Effect of Nanoscale Zero-Valent Iron Treatment on Biological Reductive Dechlorination: A Review of Current Understanding and Research Needs. Critical Reviews in Environmental Science and Technology, 45(11), 1148–1175
  11. Catauro, M., Papale, F., Roviello, G., Ferone, C., Bollino, F., Trifuoggi, M., & Aurilio, C. (2014). Synthesis of SiO2 and CaO rich calcium silicate systems via sol-gel process: Bioactivity, biocompatibility, and drug delivery tests. Journal of Biomedical Materials Research Part A, 102(9), 3087–3092. https://doi.org/10.1002/JBM.A.34978
  12. Chao, Y., Pang, J., Bai, Y., Wu, P., Luo, J., He, J., Jin, Y., Li, X., Xiong, J., Li, H., & Zhu, W. (2020). Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chemistry, 320, 126666. https://doi.org/10.1016/J.FOODCHEM.2020.126666
  13. Colonia, R., Martínez, V. C., Solís, J. L., & Gómez, M. M. (2013). Síntesis de nanopartículas de ZnO2 empleando ultrasonido: caracterización estructural y morfológica para aplicaciones bactericidas. Revista de La Sociedad Química Del Perú, 79(2), 126–135. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2013000200005
  14. Desiriana, R. (2016). Modifikasi Abu Kelud 2014 sebagai Bahan Adsorben Ion Logam Tembaga(II) dan Nikel(II) dengan Asam Sulfat. In Universitas Negeri Yogyakarta
  15. Dewi, N. P. W. T., Simpen, I. N., & Suarsa, I. W. (2017). Modifikasi Lempung Bentonit Teraktivasi Asam Dengan Benzalkonium Klorida Sebagai Adsorben Zat Warna Rhodamine B. Jurnal Kimia, 75–81. https://doi.org/10.24843/jchem.2017.v11.i01.p12
  16. Djalil, A. D., Wijaksono, B. B., & Utami, P. I. (2019). Spectrofluorimetric method for the determination of rhodamine b in syrup. Indian Journal of Public Health Research and Development, 10(9), 1856–1860. https://doi.org/10.5958/0976-5506.2019.02725.6
  17. El-Temsah, Y. S., Oughton, D. H., & Joner, E. J. (2013). Effects of nano-sized zero-valent iron on DDT degradation and residual toxicity in soil: A column experiment. Plant and Soil, 368(1–2), 189–200
  18. El-Temsah, Y. S., Sevcu, A., Bobcikova, K., Cernik, M., & Joner, E. J. (2016). DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere, 144, 2221–2228
  19. Fan, H., Ren, Q., Yu, M., Wang, S., Cao, J., Jin, Z., & Ding, Y. (2019). Preparation and Visible-light Photocatalytic Properties of Silver Orthophosphate/Graphite Carbon Nitride-Diatomite Composites. Cailiao Daobao/Materials Reports, 33(10), 3383–3389. https://doi.org/10.11896/cldb.18090125
  20. Fatimah, I., Fadillah, G., Sahroni, I., Kamari, A., Sagadevan, S., & Doong, R. A. (2021). Nanoflower-like composites of ZnO/SiO2 synthesized using bamboo leaves ash as reusable photocatalyst. Arabian Journal of Chemistry, 14(3), 102973. https://doi.org/10.1016/J.ARABJC.2020.102973
  21. Firmansyah, F., Mirzan, M., & Prismawiryanti, P. (2015). Aplikasi Fotokatalis TiO2-Zeolit Untuk Menurunkan Intensitas Zat Warna Tartrazin Secara Fotokatalitik. Natural Science: Journal of Science and Technology, 4(1), 10–16. https://doi.org/10.22487/25411969.2015.V4.I1.3996
  22. Galedari, N. A., Rahmani, M., & Tasbihi, M. (2017). Preparation, characterization, and application of ZnO@SiO2 core–shell structured catalyst for photocatalytic degradation of phenol. Environmental Science and Pollution Research, 24(14), 12655–12663. https://doi.org/10.1007/s11356-016-7888-2
  23. Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. Journal of Environmental Management, 270, 110906. https://doi.org/10.1016/J.JENVMAN.2020.110906
  24. Govindhan, P., & Pragathiswaran, C. (2019). Silver Nanoparticle Decorated on ZnO@SiO2 Nanocomposite and Application for Photocatalytic Dye Degradation of Methylene Blue. National Academy Science Letters 2019 42:4, 42(4), 323–326. https://doi.org/10.1007/S40009-018-0746-7
  25. Handayani, D. S., Jumina, J., Siswanta, D., & Mustofa, M. (2012). ADSORPSI ION LOGAM Pb(II) dan Cr(III) OLEH POLI 5ALLILKALIKS[4]ARENA TETRAESTER (Adsorption of Pb(II), Cd(II), and Cr(III) by Poly-5-allyl-calix[4]arene tetraester). Jurnal Manusia Dan Lingkungan, 19(3), 218–225. https://doi.org/10.22146/JML.18459
  26. Huang, S., Dakhchoune, M., Luo, W., Oveisi, E., He, G., Rezaei, M., Zhao, J., Alexander, D. T. L., Züttel, A., Strano, M. S., & Agrawal, K. V. (2018). Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nature Communications 2018 9:1, 9(1), 1–11. https://doi.org/10.1038/s41467-018-04904-3
  27. Huang, Y., Wang, D., Liu, W., Zheng, L., Wang, Y., Liu, X., Fan, M., & Gong, Z. (2020). Rapid screening of rhodamine B in food by hydrogel solid-phase extraction coupled with direct fluorescence detection. Food Chemistry, 316, 126378. https://doi.org/10.1016/J.FOODCHEM.2020.126378
  28. Jabeen, S., Khan, M. S., Khattak, R., Zekker, I., Burlakovs, J., Dc Rubin, S. S., Ghangrekar, M. M., Kallistova, A., Pimenov, N., Zahoor, M., & Khan, G. S. (2021). Palladium-Supported Zirconia-Based Catalytic Degradation of Rhodamine-B Dye from Wastewater. Water 2021, Vol. 13, Page 1522, 13(11), 1522. https://doi.org/10.3390/W13111522
  29. Jovanov, V., Zečević, V., Vulić, T., Ranogajec, J., & Fidanchevska, E. (2018). Preparation and characterization of protective self-cleaning TiO2/kaolin composite coating. Materiales de Construcción, 68(331), e163–e163. https://doi.org/10.3989/MC.2018.08517
  30. Kalapathy, U., Proctor, A., & Shultz, J. (2002). An improved method for production of silica from rice hull ash. Bioresource Technology, 85(3), 285–289. https://doi.org/10.1016/S0960-8524(02)00116-5
  31. Kasuma, S., Ningsih, W., Kalmar Nizar, U., Novitria, U., Kimia, J., Matematika, F., Ilmu, D., Alam, P., Negeri, U., Jln, P., Air, H., & Padang, T. (2017). SINTESIS DAN KARAKTERISASI NANOPARTIKEL ZnO DOPED Cu2+ MELALUI METODA SOL-GEL. Eksakta : Berkala Ilmiah Bidang MIPA (E-ISSN : 2549-7464), 18(02), 39–51. https://doi.org/10.24036/EKSAKTA/VOL18-ISS02/51
  32. Kumar, D., Roy, R., Parashar, A., Raichur, A. M., Chandrasekaran, N., Mukherjee, A., & Mukherjee, A. (2017). Toxicity assessment of zero valent iron nanoparticles on Artemia salina. Environmental Toxicology, 32(5), 1617–1627
  33. Lacina, P., Dvorak, V., Vodickova, E., Barson, P., Kalivoda, J., & Goold, S. (2015). The Application of Nano-Sized Zero-Valent Iron for In Situ Remediation of Chlorinated Ethylenes in Groundwater: A Field Case Study. Water Environment Research, 87(4), 326–333
  34. Li, S., Wang, W., Liang, F., & Zhang, W. (2017). Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. Journal of Hazardous Materials, 322, 163–171. https://doi.org/10.1016/j.jhazmat.2016.01.032
  35. Lora, L. C. (2014). Kombinasi Adsorben Alofan dan Abu Vulkanik Gunung Kelud Diaktivasi sebagai Penyerap Logam Berat Pada Limbah Cair Pengrajin Batik. April. https://www.researchgate.net/publication/315112600_Kombinasi_Adsorben_Alofan_dan_Abu_Vulkanik_Gunung_Kelud_Diaktivasi_sebagai_Penyerap_Logam_Berat_Pada_Limbah_Cair_Pengrajin_Batik
  36. Lourenço, R. E. R. S., Linhares, A. A. N., de Oliveira, A. V., da Silva, M. G., de Oliveira, J. G., & Canela, M. C. (2016). Photodegradation of ethylene by use of TiO2 sol-gel on polypropylene and on glass for application in the postharvest of papaya fruit. Environmental Science and Pollution Research 2016 24:7, 24(7), 6047–6054. https://doi.org/10.1007/S11356-016-8197-5
  37. Maula, I. (2015). ANALISIS PENGARUH SILIKA TERHADAP AKTIVITAS FOTOKATALITIK NANOPARTIKEL ZINC OXIDE ANALYSIS EFFECT OF SILICA TO THE PHOTOCATALYTIC OF ZINC OXIDE NANOPARTICLE
  38. Mekasuwandumrong, O., Pawinrat, P., Praserthdam, P., & Panpranot, J. (2010). Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye. Chemical Engineering Journal, 164(1), 77–84. https://doi.org/10.1016/j.cej.2010.08.027
  39. Mohamed, R. M., & Aazam, E. S. (2012). Enhancement of photocatalytic activity of ZnO–SiO2 by nano-sized Ag for visible photocatalytic reduction of Hg(II). New Pub: Balaban, 50(1–3), 140–146. https://doi.org/10.1080/19443994.2012.708559
  40. Mohamed, R. M., & Barakat, M. A. (2012). Enhancement of photocatalytic activity of ZnO/SiO 2 by nanosized Pt for photocatalytic degradation of phenol in wastewater. International Journal of Photoenergy, 2012. https://doi.org/10.1155/2012/103672
  41. Mufti, N., Diantoro, M., & Fisika, J. (2015). Sintesis Dan Sifat Fotokatalisis Komposit BaFe 12 O 19 /ZnO Terhadap Degradasi Pewarna Rhodamin B. SEMINAR NASIONAL FISIKA DAN PEMBELAJARANNYA 2015 Sintesis, 35–40
  42. Nevitasari, R., Rohman, A., & Martono, S. (2019). Validation and quantitative analysis of carmine and rhodamine B in lipstick formulation. International Journal of Applied Pharmaceutics, 11(3), 176–180. https://doi.org/10.22159/ijap.2019v11i3.32492
  43. Nizar, M., & Supardi, I. (2016). Sintesis SiO2 Berbahan Dasar Abu Vulkanik Sebagai Adsorben Ion Pb [II]. Jurnal Inovasi Fisika Indonesia (IFI), 05(1), 28–32. https://ejournal.unesa.ac.id/index.php/inovasi-fisika-indonesia/article/view/14683
  44. Nur Hasanah, A., Musfiroh, I., Mekar Saptarini, N., & Rahayu, D. (2012). Identiikasi Rhodamin B pada Produk Pangan dan Kosmetik yang Beredar di Bandung (Identiication of Rhodamine B in Food Products and Cosmetics Circulated in Bandung). JURNAL ILMU KEFARMASIAN INDONESIA, 21(1), 104–109
  45. Nurhidayati, I., Tri Wahyuni, E., Hidayat Aprilita, N., Ratnawati Hermanto, S., Pangeran Sogiri No, J., Baru, T., Utara, B., & Bogor, K. (2021). Effect of Stirring Time on Sodium Silicate Synthesis From Mount Kelud Volcanic Ash. ALCHEMY, 9(2), 48–53. https://doi.org/10.18860/AL.V9I2.12600
  46. Nurillahi, R., Halimah, D. N., Apriliani, D. G., & Fatimah, I. (2018). PENGOLAHAN LIMBAH BATIK CAIR MENGGUNAKAN FOTOKATALIS TiO2-ABU VULKANIK DESA WUKIRSARI YOGYAKARTA. Khazanah: Jurnal Mahasiswa, 10(2). https://doi.org/10.20885/khazanah.vol10.iss2.art3
  47. Nursiwi, F. C., & Wahyuni, E. T. (2017). PEMANFAATAN ABU VULKANIK SEBAGAI SUMBER SILIKA PADA PEMBUATAN FOTOKATALIS TiO2/SiO2 DAN UJI AKTIVITASNYA UNTUK FOTOREDUKSI ION Cu(II). http://etd.repository.ugm.ac.id/penelitian/detail/129148
  48. Nuryanti, S., Suherman, Rahmawati, S., Amalia, M., Santoso, T., & Muhtar, H. (2021). Langmuir and Freundlich isotherm equation test on the adsorption process of Cu (II) metal ions by cassava peel waste (Manihot esculenta crantz). Journal of Physics: Conference Series, 2126(1), 012022. https://doi.org/10.1088/1742-6596/2126/1/012022
  49. Oktaviani, Z. P., & Haris, A. (2016). Sintesis ZnO-SiO2 dan Aplikasinya pada Fotokatalisis Degradasi Limbah Organik Fenol dan Penurunan Kadar Cd(II) secara Simultan. Jurnal Kimia Sains Dan Aplikasi, 19(2), 45–49. https://doi.org/10.14710/JKSA.19.2.45-49
  50. Oyekanmi, A. A., Ahmad, A., Hossain, K., & Rafatullah, M. (2019). Statistical optimization for adsorption of Rhodamine B dye from aqueous solutions. Journal of Molecular Liquids, 281, 48–58. https://doi.org/10.1016/J.MOLLIQ.2019.02.057
  51. Permata, D. G., Diantariani, N. P., & Widihati, I. A. G. (2016). DEGRADASI FOTOKATALITIK FENOL MENGGUNAKAN FOTOKATALIS ZnO DAN SINAR UV. Jurnal Kimia. https://doi.org/10.24843/jchem.2016.v10.i02.p13
  52. Purba, M. L. (2018). Pengaruh Penambahan TiO2 Terhadap Luas Permukaan Dan Ukuran Pori Dari Silika Abu Vulkanik Gunung Sinabung. 44–48. https://repositori.usu.ac.id/handle/123456789/2360
  53. Purwoto, S., & Nugroho, W. (2013). REMOVAL KLORIDA, TDS DAN BESI PADA AIR PAYAU MELALUI PENUKAR ION DAN FILTRASI CAMPURAN ZEOLIT AKTIF DENGAN KARBON AKTIF. WAKTU, 11(1), 47–59. http://jurnal.unipasby.ac.id/index.php/waktu/article/view/861
  54. Putri, A. D. C. (2017). Sintesis Dan Karakterisasi Serbuk Zrsio4 Dengan Metode Sol-Gel. http://repository.its.ac.id/43437/
  55. Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111–128. https://doi.org/10.1016/J.JIEC.2021.02.017
  56. Rahayu, B., Napitupulu, M., & Tahril, T. (2017). ANALISIS LOGAM ZINK (Zn) DAN BESI (Fe) AIR SUMUR DI KELURAHAN PANTOLOAN KECAMATAN PALU UTARA. Jurnal Akademika Kimia, 2(1), 1–4. http://jurnal.untad.ac.id/jurnal/index.php/JAK/article/view/7718
  57. Rahayu, R., Ariyanto, D. P., Komariah, K., Hartati, S., Syamsiyah, J., & Dewi, W. S. (2014). DAMPAK ERUPSI GUNUNG MERAPI TERHADAP LAHAN DAN UPAYA-UPAYA PEMULIHANNYA. Caraka Tani: Journal of Sustainable Agriculture, 29(1), 61–72. https://doi.org/10.20961/CARAKATANI.V29I1.13320
  58. Rijal, M. (2016). Pengaruh pH Silika Berbasis Abu Vulkanik terhadap Komposit SiO2-MgO Sebagai Kandidat Seal Fuel Cells. Jurnal Inovasi Fisika Indonesia, 5(1), 23–27. https://ejournal.unesa.ac.id/index.php/inovasi-fisika-indonesia/article/view/14682
  59. Sabatini, F., Giugliano, R., & Degano, I. (2018). Photo-oxidation processes of Rhodamine B: A chromatographic and mass spectrometric approach. Microchemical Journal, 140, 114–122. https://doi.org/10.1016/j.microc.2018.04.018
  60. Safni, S., Deliza, D., & Rahmayeni, R. (2014). DEGRADASI RHODAMIN B SECARA DENGAN PENAMBAHAN TIO2-NIFE2O4, TiO2-CuFe2O4, DAN TiO2-MnFe2O4. Jurnal Riset Kimia, 7(2), 151. https://doi.org/10.25077/jrk.v7i2.178
  61. Saif, S., Tahir, A., & Chen, Y. (2016a). Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials, 6(209), 1–29. https://doi.org/10.3390/nano6110209
  62. Saif, S., Tahir, A., & Chen, Y. (2016b). Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. 1–26. https://doi.org/10.3390/nano6110209
  63. Satiyarti, R. B., Anggaraini, N., & Sugiharta, I. (2021). Rhodamine B Detection from Inexpensive Blush On in Bandar Lampung City. Jurnal Kartika Kimia, 4(1), 38–41. https://doi.org/10.26874/JKK.V4I1.78
  64. Setiyani, R., Dina, D., Maharani, K., Kimia, J., Matematika, F., Ilmu, D., & Alam, P. (2015). PEMANFAATAN KOMPOSIT KITOSAN ZnO-SiO 2 SEBAGAI AGEN ANTIBAKTERI TERHADAP BAKTERI Staphylococcus aureus PADA KAIN KATUN THE USE OF CHITOSAN ZnO-SiO 2 COMPOSITE AS ANTIBACTERIAL AGENT OF Staphylococcus aureus BACTERIA IN COTTON FABRIC. UNESA Journal of Chemistry, 4(2), 88–93
  65. Setyawati, D. A., & Haris, A. (2015). Sintesis ZnO-SiO2 serta Aplikasinya pada Degradasi Limbah Organik Fenol dan Fotoreduksi Pb(II) secara Simultan. Jurnal Kimia Sains Dan Aplikasi, 18(3), 96–100. https://doi.org/10.14710/JKSA.18.3.96-100
  66. Shen, X., Shi, Y., Shao, H., Liu, Y., & Zhai, Y. (2020). Synthesis and photocatalytic degradation ability evaluation for rhodamine B of ZnO@SiO2 composite with flower-like structure. Water Science and Technology, 80(10), 1986–1995. https://doi.org/10.2166/wst.2020.020
  67. Shu, H. Y., Chang, M. C., Chen, C. C., & Chen, P. E. (2010). Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. Journal of Hazardous Materials, 184(1–3), 499–505
  68. Simatupang, L., & Devi, D. (2016). The preparation and characterization of Sinabung volcanic ash as silica based adsorbent. Jurnal Pendidikan Kimia, 8(3), 159–163. https://doi.org/10.24114/JPKIM.V8I3.4478
  69. Skjolding, L. M., Jørgensen, L. v. G., Dyhr, K. S., Köppl, C. J., McKnight, U. S., Bauer-Gottwein, P., Mayer, P., Bjerg, P. L., & Baun, A. (2021). Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Research, 197, 117109. https://doi.org/10.1016/J.WATRES.2021.117109
  70. Suharno, Harajanti, B., Wijanto, D. S., Saputro, H., & Basori. (2012). Pendidikan Dan Pelatihan Profesi Guru ( PLPG ). FKIP Universitas Sebelas Maret
  71. Sunardi, Sunardi, Mardiyono, M., & Hidayati, N. (2022). Pemanfaatan Scrap Besi menjadi Copperas dan Ekstrak Kulit Rambutan untuk Pembuatan Nanopartikel Besi yang Ramah Lingkungan. Jurnal Ilmu Lingkungan, 20(3), 494–507. https://doi.org/10.14710/jil.20.3.494-507
  72. Sunardi, S., Irawati, U., & Sybianti, N. R. (2016). SINTESIS DAN KARAKTERISASI KOMPOSIT KAOLIN-TiO2 SEBAGAI FOTOKATALIS UNTUK DEGRADASI ZAT WARNA RHODAMINE B. Jurnal Ilmiah Berkala Sains Dan Terapan Kimia, 6(2), 118–129. https://doi.org/10.20527/JSTK.V6I2.2112
  73. Sunardi, S., & Silviana, S. (2020). Synthesis and Characterization of SiO2/ZnO Nanocomposites from Zinc Waste and Mount Merapi Volcanic Ash. Jurnal Kimia Sains Dan Aplikasi, 23(10), 365–369. https://doi.org/10.14710/jksa.23.10.365-369
  74. Taha, M., & Ibrahim, A. (2014). Applicability of nano zero valent iron (nZVI) in sono–Fenton process. Journal of Physics: …. https://doi.org/10.1088/1742-6596/495/1/012010
  75. Taha, M. R., & Ibrahim, A. H. (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering, 2(1), 1–8. https://doi.org/10.1016/j.jece.2013.11.021
  76. Taner Bişgin, A., Yazar, S., & Corresponding, /. (2020). Vortex-assisted ionic liquid-based dispersive liquid-liquid micro-extraction and spectrofluorometric determination of Rhodamine B in anti-freeze, lipstick, liquid soap, matches and red pencil core. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 1820–1832. https://doi.org/10.21597/JIST.703292
  77. Tejabhiram, Y., Pradeep, R., Helen, A. T., Gopalakrishnan, C., & Ramasamy, C. (2014). Ferrous sulfate based low temperature synthesis and magnetic properties of nickel ferrite nanostructures. Materials Research Bulletin, 60(1), 778–782. https://doi.org/10.1016/j.materresbull.2014.09.03

Last update:

No citation recorded.

Last update: 2024-12-27 09:27:18

No citation recorded.