skip to main content

Ketahanan Air Indonesia dalam Perspektif Ilmu Lingkungan dan Paradigma Nexus Pangan-Energi-Air Berkelanjutan

1Badan Riset dan Inovasi Nasional (BRIN), Indonesia

2Sekolah Ilmu Lingkungan, Universitas Indonesia, Indonesia

Received: 13 Jun 2022; Revised: 2 Feb 2023; Accepted: 11 Feb 2023; Available online: 26 Mar 2023; Published: 5 Apr 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Sumberdaya air merupakan salah satu elemen vital dalam menunjang kelangsungan hidup di bumi ini. Semakin tingginya kebutuhan terhadap sumberdaya air menjadikan kajian seputar ketersediaan air dan ketahanan air di suatu wilayah menjadi penting. Hal itu menjadikan ketahanan air memegang peranan vital dalam konsep keberlanjutan. Ketahanan air penting untuk dapat dicapai karena memiliki implikasi terhadap pencapaian ketahanan sektor-sektor lainnya, seperti energi dan pangan, secara nasional. Saat ini, pengelolaan dan pemanfaatan sumber daya air di Indonesia masih menghadapi beberapa tantangan yang mesti segera diselesaikan melalui kebijakan dan program yang berorientasi pada tercapainya ketahanan air. Tulisan ini bertujuan untuk melakukan kajian dan analisis terhadap ketahanan air di Indonesia dalam perspektif Ilmu Lingkungan dan Nexus Pangan-Energi-Air Berkelanjutan. Melalui studi literatur yang dilakukan terhadap berbagai sumber yang relevan, tulisan ini juga berupaya memberikan pandangan terhadap arah kebijakan pengelolaan sumberdaya air di Indonesia. Hasil penelitian ini menjelaskan beberapa tantangan utama dalam ketahanan air di Indonesia merupakan persoalan yang belakangan semakin terasa dampaknya bagi keberlanjutan hidup penduduk Indonesia. Dari hasil identifikasi tantangan dalam ketahanan air di Indonesia, penelitian ini memberikan rekomendasi bagi arah kebijakan pengelolaan sumber daya air di Indonesia.
Fulltext View|Download
Keywords: air; keberlanjutan; ketahanan; lingkungan; nexus Pangan-Energi-Air

Article Metrics:

  1. Abdelkader A. and Elshorbagy A. (2021). ACPAR: A framework for linking national water and food security management with global conditions. Advances in Water Resources, 147(June 2020), 103809. DOI: 10.1016/j.advwatres.2020.103809
  2. Andreas H. (2020). Masalah Usang dan Runyam Penurunan Muka Tanah Jakarta. Tirto.Id. https://tirto.id/masalah-usang-dan-runyam-penurunan-muka-tanah-jakarta-fKwS
  3. Asian Development Bank. (2016). Country Water assessment Indonesia Country Water assessment. ADB. www.adb.org
  4. Asian Development Bank. (2020). Asian Water Development Outlook 2020. https://www.adb.org/publications/asian-water-development-outlook-2020
  5. Barinda S. and Ayuningtyas D. (2022). Assessing the food control system in Indonesia: A conceptual framework. Food Control, 134, 108687. DOI: 10.1016/j.foodcont.2021.108687
  6. Besbes M., Chahed J. and Hamdane A. (2018). National Water Security: Case Study of an Arid Country: Tunisia. In: National Water Security: Case Study of an Arid Country: Tunisia. DOI: 10.1007/978-3-319-75499-4
  7. BNPB. (2021). BNPB Mencatat 3.034 Bencana Alam Terjadi di 2021, Didominasi Banjir. Sindo News. https://nasional.sindonews.com/read/639951/15/bnpb-mencatat-3034-bencana-alam-terjadi-di-2021-didominasi-banjir-1640567537
  8. Boelens R. and Seemann M. (2014). Forced engagements: Water se Curity and local rights formalization in Yanque, Colca valley, Peru. Human Organization, 73(1), 1–12. DOI: 10.17730/humo.73.1.d44776822845k515
  9. Brandshaug M.K. (2019). Water as more than commons or commodity: Understanding water management practices in Yanque, Peru. Water Alternatives, 12(2), 538–553
  10. Carvalho de Melo M., Formiga-Johnsson R.M., Soares de Azevedo J.P., de Oliveira Nascimento N., Lisboa Vieira Machado F., Leal Pacheco F.A. and Sanches Fernandes L.F. (2021). A raw water security risk model for urban supply based on failure mode analysis. Journal of Hydrology, 593(July 2020). DOI: 10.1016/j.jhydrol.2020.125843
  11. Chawla I., Karthikeyan L. and Mishra A.K. (2020). A review of remote sensing applications for water security: Quantity, quality, and extremes. Journal of Hydrology, 585(March), 124826. DOI: 10.1016/j.jhydrol.2020.124826
  12. Creswell W.J. and Creswell J.D. (2018). Research Design: Qualitative, Quantitative adn Mixed Methods Approaches. In: Journal of Chemical Information and Modeling , Vol. 53, Issue 9
  13. Damkjaer S. and Taylor R. (2017). The measurement of water scarcity: Defining a meaningful indicator. Ambio, 46(5), 513–531. DOI: 10.1007/s13280-017-0912-z
  14. Ding T., Liang L., Zhou K., Yang M. and Wei Y. (2020). Water-energy nexus: The origin, development and prospect. Ecological Modelling, 419(January), 108943. DOI: 10.1016/j.ecolmodel.2020.108943
  15. Doeffinger T. and Hall J.W. (2021). Assessing water security across scales: A case study of the United States. Applied Geography, 134(May), 102500. DOI: 10.1016/j.apgeog.2021.102500
  16. Dou P., Zuo S., Ren Y., Rodriguez M.J. and Dai S. (2021). Refined water security assessment for sustainable water management: A case study of 15 key cities in the Yangtze River Delta, China. Journal of Environmental Management, 290(April), 112588. DOI: 10.1016/j.jenvman.2021.112588
  17. Endo A., Tsurita I., Burnett K. and Orencio P.M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20–30. DOI: 10.1016/j.ejrh.2015.11.010
  18. Gain A.K., Giupponi C. and Wada Y. (2016). Measuring global water security towards sustainable development goals. Environmental Research Letters, 11(12). DOI: 10.1088/1748-9326/11/12/124015
  19. Grey D., Garrick D., Blackmore D., Kelman J., Muller M. and Sadoff C. (2013). Water security in one blue planet: Twenty-first century policy challenges for science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(2002). DOI: 10.1098/rsta.2012.0406
  20. Hoekstra A.Y., Buurman J. and Van Ginkel K.C.H. (2018). Urban water security: A review. Environmental Research Letters, 13(5). DOI: 10.1088/1748-9326/aaba52
  21. Howlett M.P. and Cuenca J.S. (2017). The use of indicators in environmental policy appraisal: lessons from the design and evolution of water security policy measures. Journal of Environmental Policy and Planning, 19(2), 229–243. DOI: 10.1080/1523908X.2016.1207507
  22. Huang J., Yu H., Han D., Zhang G., Wei Y., Huang J., An L., Liu X. and Ren Y. (2020). Declines in global ecological security under climate change. Ecological Indicators, 117(June), 106651. DOI: 10.1016/j.ecolind.2020.106651
  23. Jensen O. and Wu H. (2018). Urban water security indicators: Development and pilot. Environmental Science and Policy, 83(February), 33–45. DOI: 10.1016/j.envsci.2018.02.003
  24. Kangmennaang J. and Elliott S.J. (2021). Linking water (in)security and wellbeing in low-and middle-income countries. Water Security, 13(October 2020), 100089. DOI: 10.1016/j.wasec.2021.100089
  25. Kementerian Perencanaan Pembangunan Nasional/BAPPENAS. (2021). Indonesia’s Voluntary National Review (VNR) 2021
  26. Kosovac A. and Davidson B. (2020). Is too much personal dread stifling alternative pathways to improving urban water security? Journal of Environmental Management, 265(August 2019), 110496. DOI: 10.1016/j.jenvman.2020.110496
  27. Lamba K. and Singh S.P. (2017). Big data in operations and supply chain management: current trends and future perspectives. Production Planning and Control, 28(11–12), 877–890. DOI: 10.1080/09537287.2017.1336787
  28. Lang Y., Song W. and Zhang Y. (2017). Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Physics and Chemistry of the Earth, 101, 102–111. DOI: 10.1016/j.pce.2017.06.003
  29. Liu B., Zhang F., Qin X., Wu Z., Wang X. and He Y. (2021). Spatiotemporal assessment of water security in China: An integrated supply-demand coupling model. Journal of Cleaner Production, 321(August), 128955. DOI: 10.1016/j.jclepro.2021.128955
  30. Lu S., Tang X., Guan X., Qin F., Liu X. and Zhang D. (2020). The assessment of forest ecological security and its determining indicators: A case study of the Yangtze River Economic Belt in China. Journal of Environmental Management, 258(December 2019), 110048. DOI: 10.1016/j.jenvman.2019.110048
  31. Lüke A. and Hack J. (2018). Comparing the applicability of commonly used hydrological ecosystem services models for integrated decision-support. Sustainability (Switzerland), 10(2). DOI: 10.3390/su10020346
  32. Madani K. and Khatami S. (2015). Water for Energy: Inconsistent Assessment Standards and Inability to Judge Properly. Current Sustainable/Renewable Energy Reports, 2(1), 10–16. DOI: 10.1007/s40518-014-0022-5
  33. Mekonnen M.M. and Hoekstra A.Y. (2016). Sustainability: Four billion people facing severe water scarcity. Science Advances, 2(2), 1–7. DOI: 10.1126/sciadv.1500323
  34. Nhamo L., Ndlela B., Mpandeli S. and Mabhaudhi T. (2020). The water-energy-food nexus as an adaptation strategy for achieving sustainable livelihoods at a local level. Sustainability (Switzerland), 12(20), 1–16. DOI: 10.3390/su12208582
  35. Peng J., Yang Y., Liu Y., Hu Y., Du Y., Meersmans J. and Qiu S. (2018). Linking ecosystem services and circuit theory to identify ecological security patterns. Science of the Total Environment, 644, 781–790. DOI: 10.1016/j.scitotenv.2018.06.292
  36. Pirmana V., Salsiah A., Anshory A., Hoekstra R. and Tukker A. (2021). Environmental costs assessment for improved environmental- economic account for Indonesia. Journal of Cleaner Production, 280, 124521. DOI: 10.1016/j.jclepro.2020.124521
  37. Purwanto A., Sušnik J., Suryadi F.X. and de Fraiture C. (2021). Quantitative simulation of the water-energy-food (WEF) security nexus in a local planning context in indonesia. Sustainable Production and Consumption, 25, 198–216. DOI: 10.1016/j.spc.2020.08.009
  38. Republik Indonesia. (2020). RPJMN 2020-2024
  39. Rozaki Z. (2021). Food security challenges and opportunities in indonesia post COVID-19. In: Advances in Food Security and Sustainability , 1st ed. Elsevier Inc. DOI: 10.1016/bs.af2s.2021.07.002
  40. Sen S.M. and Kansal A. (2019). Achieving water security in rural Indian Himalayas: A participatory account of challenges and potential solutions. Journal of Environmental Management, 245(May), 398–408. DOI: 10.1016/j.jenvman.2019.05.132
  41. Shomar B. and Dare A. (2016). Ten key research issues for integrated and sustainable wastewater reuse in the Middle East. Environmental Science and Pollution Research, 22(8), 5699–5710. DOI: 10.1007/s11356-014-3875-7
  42. Shukla S., Singh S.P. and Shankar R. (2018). Evaluating elements of national food control system: Indian context. Food Control, 90, 121–130. DOI: 10.1016/j.foodcont.2018.02.046
  43. van Noordwijk M., Kim Y.S., Leimona B., Hairiah K. and Fisher L.A. (2016). Metrics of water security, adaptive capacity, and agroforestry in Indonesia. Current Opinion in Environmental Sustainability, 21, 1–8. DOI: 10.1016/j.cosust.2016.10.004
  44. Vats G., Sharma D. and Sandu S. (2021). A flexible input-output price model for assessment of a nexus perspective to energy, water, food security policymaking. Renewable and Sustainable Energy Transition, 1(May), 100012. DOI: 10.1016/j.rset.2021.100012
  45. Veettil A.V. and Mishra A.K. (2018). Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. Journal of Environmental Management, 228(August), 346–362. DOI: 10.1016/j.jenvman.2018.09.012
  46. Wu X., Ye Y., Hu D., Liu Z. and Cao J. (2014). Food safety assurance systems in Hong Kong. Food Control, 37(1), 141–145. DOI: 10.1016/j.foodcont.2013.09.025
  47. Zakeri M.A., Mirnia S.K. and Moradi H. (2021). Assessment of water security in the large watersheds of Iran. Environmental Science and Policy, 127, 31–37. DOI: 10.1016/j.envsci.2021.10.009
  48. Zarei M. (2020). The water-energy-food nexus: A holistic approach for resource security in Iran, Iraq, and Turkey. Water-Energy Nexus, 3, 81–94. DOI: 10.1016/j.wen.2020.05.004

Last update:

No citation recorded.

Last update: 2024-11-01 00:26:23

No citation recorded.