skip to main content

Studi Kinetika Esktraksi Silika dari Abu Sekam Limbah Penggilingan Padi pada Kabupaten Gowa

Program Studi Teknik Kimia Mineral, Politeknik ATI Makassar, Jl. Sunu No. 220, Kota Makassar, Sulawesi Selatan, 90211, Indonesia

Received: 11 Aug 2022; Revised: 17 Jul 2023; Accepted: 17 Aug 2023; Available online: 17 Sep 2023; Published: 21 Sep 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract

Padi merupakan sumber dari pangan utama masyarakat Indonesia. Peningkatan populasi penduduk mengakibatkan peningkatan sumber pangan ini. Namun, produksi padi menimbulkan produk samping seperti sekam padi yang belum dimanfaatkan bahkan dibiarkan menumpuk menjadi limbah padat hasil penggilingan padi. Sekam padi mengandung kadar silika yang tinggi, bervariasi untuk lokasi yang berbeda. Kadar silika yang tinggi ini dapat dimanfaatkan sebagai bahan utama sintesis produk yang memerlukan bahan utama silika seperti zeolit. Penelitian ini bertujuan untuk mengetahui pengaruh suhu terhadap ekstraksi silika dari abu sekam padi. Preparasi sampel dilakukan dengan proses pengarangan dan pengabuan pada temperatur 750 oC selama 4 jam yang bertujuan untuk mereduksi material organik dan volatil. Abu sekam padi diekstraksi menggunakan larutan NaOH untuk menghasilkan filtrat Na2SiO3. Rekoveri silika paling tinggi tercatat sebesar 95.59 % pada NaOH 2 N, rasio S/L 10 gram/100 mL, 90 oC dan 200 rpm selama 120 menit. Shrinking core model digunakan untuk mengevaluasi kinetika proses ekstraksi. Didapatkan bahwa model reaksi pada permukaan inti mengontrol proses ekstraksi dengan energi aktivasi sebesar 40.11 kJ/mol. Persamaan kinetika dari proses ekstraksi silika dari abu sekam padi menggunakan NaOH adalah 4907.01 exp (-40.11 kJ/mol / (R.T))t = 1-(1-X)^(1/3).

Fulltext View|Download
Keywords: Sekam Padi; Silika; Ekstraksi; Kinetika
Funding: Politeknik ATI Makassar

Article Metrics:

  1. Alfiansyah, Arnelli, & Astuti, Y. (2015). Synthesis of rice husk-based zeolit using hydrothermal method and its detergent builder properties. 5th International Seminar on New Paradigm and Innovation on Natural Sciences and Its Application (5th ISNPINSA) , 7-8 October 2015, ICT Centre Diponegoro University., 148–153
  2. Badan Pusat Statistik. (2021). Luas Panen dan Produksi Padi di Indonesia 2021 (Angka Sementara). In Berita Resmi Statistik (Vol. 2021, Issue March). https://www.bps.go.id/publication/2022/07/12/
  3. Benke, D. J., Wainwright, M. S., Nigam, K. D. P., & Rao, T. R. (2006). Kinetics of silica dissolution from rice husk char. Canadian Journal of Chemical Engineering, 84(6), 688–692. https://doi.org/10.1002/cjce.5450840607
  4. Fernandes, A. de A. (2006). “Síntese de Zeólitas e Wolastonita à partir da cinza da casca do arroz” [Universidade de São Paulo]. https://doi.org/10.11606/T.85.2006.tde-08062007-145111
  5. Fernandes, I. J., Calheiro, D., Sánchez, F. A. L., Camacho, A. L. D., De Campos Rocha, T. L. A., Moraes, C. A. M., & De Sousa, V. C. (2017). Characterization of silica produced from rice husk ash: Comparison of purification and processing methods. Materials Research, 20, 519–525. https://doi.org/10.1590/1980-5373-mr-2016-1043
  6. Ghorbani, F., Sanati, A. M., & Maleki, M. (2015). Production of Silica Nanoparticles from Rice Husk as Agricultural Waste by Environmental Friendly Technique. Environmental Studies of Persian Gulf, 2(1), 56–65
  7. Handayani, P. A., Nurjanah, E., & Rengga, W. D. P. (2014). Pemanfaatan Limbah Sekam Padi Menjadi Silika Gel. Jurnal Bahan Alam Terbarukan, 3(2), 55–59. https://doi.org/10.15294/jbat.v3i2.3698
  8. Hossain, S. K. S., Mathur, L., & Roy, P. K. (2018). Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. Journal of Asian Ceramic Societies, 6(4), 299–313. https://doi.org/10.1080/21870764.2018.1539210
  9. Kalapathy, U., Proctor, A., & Shultz, J. (2001). A simple method for production of pure silica from rice hull ash. Fuel and Energy Abstracts, 42(1), 45. https://doi.org/10.1016/s0140-6701(01)80487-2
  10. Kamari, S., & Ghorbani, F. (2021). Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41. Biomass Conversion and Biorefinery, 11(6), 3001–3009. https://doi.org/10.1007/s13399-020-00637-w
  11. Levenspiel, O. (1999). Chemical Reaction Engineering. In W. Anderson (Ed.), Albright’s Chemical Engineering Handbook (3rd ed.). John Wiley and Sons. https://doi.org/10.1201/9781420014389.ch11
  12. Martin, K. R. (2007). The chemistry of silica and its potential health benefits. The Journal of Nutrition, Health & Aging, 11(2), 94–97
  13. Mohamed, R. M., Mkhalid, I. A., & Barakat, M. A. (2015). Rice husk ash as a renewable source for the production of zeolite NaY and its characterization. Arabian Journal of Chemistry, 8(1), 48–53. https://doi.org/10.1016/j.arabjc.2012.12.013
  14. Nguyen, T. T., Ma, H. T., Avti, P., Bashir, M. J. K., Ng, C. A., Wong, L. Y., Jun, H. K., Ngo, Q. M., & Tran, N. Q. (2019). Adsorptive removal of iron using SiO2 nanoparticles extracted from rice husk ash. Journal of Analytical Methods in Chemistry, 2019. https://doi.org/10.1155/2019/6210240
  15. Panda, R., Kumari, A., Jha, M. K., Hait, J., Kumar, V., Rajesh Kumar, J., & Lee, J. Y. (2014). Leaching of rare earth metals (REMs) from Korean monazite concentrate. Journal of Industrial and Engineering Chemistry, 20(4), 2035–2042. https://doi.org/10.1016/j.jiec.2013.09.028
  16. Park, J. Y., Gu, Y. M., Park, S. Y., Hwang, E. T., Sang, B. I., Chun, J., & Lee, J. H. (2021). Two-stage continuous process for the extraction of silica from rice husk using attrition ball milling and alkaline leaching methods. Sustainability (Switzerland), 13(13). https://doi.org/10.3390/su13137350
  17. Prameswara, G., Trisnawati, I., Mulyono, P., Prasetya, A., & Petrus, H. T. B. M. (2021). Leaching Behaviour and Kinetic of Light and Heavy Rare Earth Elements (REE) from Zircon Tailings in Indonesia. JOM, 73(4), 988–998. https://doi.org/10.1007/s11837-021-04584-3
  18. Prameswara, G., Trisnawati, I., Poernomo, H., Mulyono, P., Prasetya, A., & Petrus, H. T. B. M. (2020). Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings. Mining, Metallurgy & Exploration, 37(4), 1297–1305. https://doi.org/10.1007/s42461-020-00220-x
  19. Rungrodnimitchai, S., Phokhanusai, W., & Sungkhaho, N. (2009). Preparation of Silica Gel from Rice Husk Ash Using Microwave Heating. Journal of Metals, Materials and Minerals, 19(2), 45–50
  20. Setyawan, N., Hoerudin, & Wulanawati, A. (2019). Simple extraction of silica nanoparticles from rice husk using technical grade solvent: Effect of volume and concentration. IOP Conference Series: Earth and Environmental Science, 309(1). https://doi.org/10.1088/1755-1315/309/1/012032
  21. Shelke, V. R., Bhagade, S. S., & Mandavgane, S. A. (2010). Mesoporous silica from Rice Husk ash. Bulletin of Chemical Reaction Engineering & Catalysis, 5(2), 63–67. https://doi.org/10.9767/bcrec.5.2.793.63-67
  22. Suka, I. G., Simanjuntak, W., Sembiring, S., & Trisnawati, E. (2008). Karakteristik Keasaman Katalis berbasis Silika Sekam Padi yang Diperoleh dengan Teknik Sol-Gel. Prosiding Seminar Nasional Sains Dan Teknologi II, 37, 342–456
  23. Wang, R. C., Zhai, Y. C., Ning, Z. Q., & Ma, P. H. (2014). Kinetics of SiO2 leaching from Al2O3 extracted slag of fly ash with sodium hydroxide solution. Transactions of Nonferrous Metals Society of China (English Edition), 24(6), 1928–1936. https://doi.org/10.1016/S1003-6326(14)63273-8
  24. Zhang, C., Li, S., & Bao, S. (2019). Sustainable Synthesis of ZSM-5 Zeolite from Rice Husk Ash Without Addition of Solvents. Waste and Biomass Valorization, 10(10), 2825–2835. https://doi.org/10.1007/s12649-018-0356-0

Last update:

No citation recorded.

Last update: 2025-01-27 11:59:21

No citation recorded.