skip to main content

Application of Compost and Manure in the Biopore Infiltration Hole to Improve Saturated Hydraulic Conductivity (Shc) of Soil in the Coffee Root Zone

1Postgraduate Program in Soil and Water Management, Agriculture Faculty, Brawijaya University, Malang, Indonesia, Indonesia

2Soil Department, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia

Received: 8 Jan 2023; Revised: 10 Aug 2023; Accepted: 24 Aug 2023; Available online: 18 Nov 2023; Published: 10 Dec 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Coffee is one of the primary sources of foreign exchange in Indonesia. The factors causing fluctuations in coffee production are climate change, high soil density, less organic material, which causes coffee roots to be unable to absorb water and nutrients optimally. The soil water movement measured by saturated hydraulic conductivity which represents the soil ability to transmit water. The application of compost and manure in the biopore infiltration hole (BIH) is an effective technology in reducing surface-runoff and organic wastes management, as well as soil characteristics improvement. This study was conducted using a Randomized Block Design with four treatments and four replications. The treatments were P1 as control (without BIH), P2 (BIH without compost), P3 (BIH+compost), and P4 (BIH+goat manure). Data analysis was carried out using the Ftest (ANOVA), and continued with Least Significant Difference (LSD) test at 5% level, when there was a significant difference. Observations of soil characteristics were carried out every two months in three depth of root zone, 0-20 cm, 20-40 cm, and 40-60 cm. While the observation of the Auger hole at a depth of 0-30 cm and 0-60 cm. Research variables include soil texture, soil bulk density, Saturated Hydraulic Conductivity of soil by Auger-Hole, Soil Organic Matter (SOC), pH, Cation Exchange Capasity (CEC), and coffee yield. Results showed that treatment of BIH+goat manure gave the best results, measured by improving soil hydraulic conductivity up to 40%. The highest coffee yield was found in the BIH+manure treatment to 3.29 t ha-1.
Fulltext View|Download
Keywords: Auger hole; BIH; Hydraulic Conductivity; Root zone; Coffee plantation

Article Metrics:

  1. Aranda, V., Macci, C., Peruzzi, E., & Masciandaro, G. (2015). Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. Journal of Environmental Management, 147, 278–285. https://doi.org/https://doi.org/10.1016/j.jenvman.2014.08.024
  2. Boizard, H., Peigné, J., Sasal, M. C., de Fátima Guimarães, M., Piron, D., Tomis, V., Vian, J.-F., Cadoux, S., Ralisch, R., Tavares Filho, J., Heddadj, D., De Battista, J., Duparque, A., Franchini, J. C., & Roger-Estrade, J. (2017). Developments in the “profil cultural” method for an improved assessment of soil structure under no-till. Soil and Tillage Research, 173, 92–103. https://doi.org/https://doi.org/10.1016/j.still.2016.07.007
  3. Bote, Adugna D, & Struik, P. C. (2011). Effects of shade on growth , production and quality of coffee ( Coffea arabica ) in Ethiopia. Journal of Horticulture and Forestry, 3(11), 336–341
  4. Bote, Adugna Debela, & Jan, V. (2016). Branch growth dynamics, photosynthesis, yield and bean size distribution in response to fruit load manipulation in coffee trees. Trees, 30(4), 1275–1285. https://doi.org/10.1007/s00468-016-1365-x
  5. Cahyono, P., Astuti, N. K., Purwito, & Rahmat. (2017). Mapping the rainfall distribution for irrigation planning in dry season at pineapple plantation , Lampung Province , Indonesia ( Study case at Great Giant Pineapple Co . Ltd .) Mapping the rainfall distribution for irrigation planning in dry season at pin. IOP Conf. Series: Earth and Environmental Science, 129(2018), 1–6. https://doi.org/10.1088/1755-1315/129/1/012017
  6. Cao, S., Zhou, Y., Zhou, Y., Zhou, X., & Zhou, W. (2021). Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations. Journal of Environmental Management, 293, 112847. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.112847
  7. Castellini, M., & Ventrella, D. (2012). Impact of conventional and minimum tillage on soil hydraulic conductivity in typical cropping system in Southern Italy. Soil and Tillage Research, 124, 47–56. https://doi.org/10.1016/j.still.2012.04.008
  8. Chalchissa, F. B., Diga, G. M., Feyisa, G. L., & Tolossa, A. R. (2022). Impacts of extreme agroclimatic indicators on the performance of coffee (Coffea arabica L.) aboveground biomass in Jimma Zone, Ethiopia. Heliyon, 8(8), e10136. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10136
  9. Chemura, A., Mutanga, O., & Odindi, J. (2017). Empirical Modeling of Leaf Chlorophyll Content in Coffee (Coffea Arabica) Plantations With Sentinel-2 MSI Data: Effects of Spectral Settings, Spatial Resolution, and Crop Canopy Cover. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5541–5550. https://doi.org/10.1109/JSTARS.2017.2750325
  10. Damatta, F. M., Ronchi, C. P., Maestri, M., & Barros, R. S. (2008). Ecophysiology of coffee growth and production. Braz. J. Plant Physiol, 19(4), 485–510
  11. De Notaris, C., Jensen, J. L., Olesen, J. E., Stumpf da Silva, T., Rasmussen, J., Panagea, I., & Rubæk, G. H. (2021). Long-term soil quality effects of soil and crop management in organic and conventional arable cropping systems. Geoderma, 403, 115383. https://doi.org/https://doi.org/10.1016/j.geoderma.2021.115383
  12. Directorat General of Estate Crops. (2020). Statistik Perkebunan Unggulan Nasional 2019-2021. Direktorat Jenderal Perkebunan, Kementerian Pertanian
  13. Domingues, R. R., Miguel, A. S., Spokas, K. A., Melo, C. A., Trugilho, P. F., Valenciano, M. N., & Silva, C. A. (2020). Enhancing Cation Exchange Capacity of Weathered Soils Using Biochar : Feedstock , Pyrolysis Conditions and Addition Rate. Agronomy, 10(824), 1–17. https://doi.org/10.3390/agronomy10060824
  14. Fitria, L., & Soemarno. (2022). Effects of Lime and Compost on Chemical Characteristics and Soil Hydraulic Conductivity of Alfisols at ATP Jatikerto Coffee Plantation. Journal of Sustainable Agriculture, 37(1), 48–61. https://doi.org/http://dx.doi.org/10.20961/carakatani.v37i1.54010 Effects
  15. Fukumasu, J., Jarvis, N., Koestel, J., Katterer, T., & Larsbo, M. (2022). Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties. September 2021, 1–15. https://doi.org/10.1111/ejss.13212
  16. Gaiser, T., Perkons, U., Küpper, P. M., Kautz, T., Uteau-Puschmann, D., Ewert, F., Enders, A., & Krauss, G. (2013). Modeling biopore effects on root growth and biomass production on soils with pronounced sub-soil clay accumulation. Ecological Modelling, 256, 6–15. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2013.02.016
  17. Getahun, G. T., Kätterer, T., Munkholm, L. J., Rychel, K., & Kirchmann, H. (2022). Effects of loosening combined with straw incorporation into the upper subsoil on soil properties and crop yield in a three-year field experiment. Soil and Tillage Research, 223, 105466. https://doi.org/https://doi.org/10.1016/j.still.2022.105466
  18. Harahap, R. H., Humaizi, & Muda, I. (2019). Sustainable Management of Coffee Farms (Case in Karo Regency, North Sumatera Indonesia). International Journal Civil Engineering and Technology (IJCIET), 9(11), 2721–2731. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=9&IType=11
  19. Herawati, A., Mujiyo, Syamsiyah, J., Baldan, S. K., & Arifin, I. (2021). Application of soil amendments as a strategy for water holding capacity in sandy soils Application of soil amendments as a strategy for water holding capacity in sandy soils. The 5th International Conference on Climate Change, 724(2021), 1–10. https://doi.org/10.1088/1755-1315/724/1/012014
  20. Iskandar, B. S., Iskandar, J., Irawan, B., & Partasasmita, R. (2019). The development of coffee cultivation in the traditional agroforestry of mixed-garden ( dukuh lembur ) to provide social-economic benefit for the Outer Baduy Community , South Banten , Indonesia. 20(10), 2958–2969. https://doi.org/10.13057/biodiv/d201026
  21. Iwasaki, S., Endo, Y., & Hatano, R. (2017). Soil Science and Plant Nutrition The effect of organic matter application on carbon sequestration and soil fertility in upland fields of different types of Andosols. Soil Science and Plant Nutrition, 63(2), 200–220. https://doi.org/10.1080/00380768.2017.1309255
  22. J R Landon. (1986). Booker Tropical Soil Manual (pp. 58–102)
  23. Khusna, N. I., Amin, S., Efrianinrum, F. Y., & Bashith, A. (2020). The effect of using biopore on soil fertility in karst area , District of Besuki , Tulungagung Regency. IOP Conference Series : Earth and Environmental Science, 485(2020), 1–10. https://doi.org/10.1088/1755-1315/485/1/012066
  24. Li, Y., Feng, G., Tewolde, H., Zhang, F., Yan, C., & Yang, M. (2021). Soil aggregation and water holding capacity of soil amended with agro-industrial byproducts and poultry litter. Journal of Soils and Sediments, 21(2), 1127–1135. https://doi.org/10.1007/s11368-020-02837-3
  25. Lynch, J. P., Schneider, H. M., Mooney, S. J., & Strock, C. F. (2022). Future roots for future soils. Plant, Cell, & Environment, September 2021, 620–636. https://doi.org/10.1111/pce.14213
  26. Marín-Castro, B. E., Negrete-Yankelevich, S., & Geissert, D. (2017). Litter thickness, but not root biomass, explains the average and spatial structure of soil hydraulic conductivity in secondary forests and coffee agroecosystems in Veracruz, Mexico. Science of The Total Environment, 607–608, 1357–1366. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.07.064
  27. Mayoli, R. N., & Gitau, K. M. (2012). The Effects Of Shade Trees On Physiology Of Arabica Coffee. Journal of Horticultural Science, 6
  28. Mulyawati, I. (2021). COMMUNITY EMPOWERMENT AT NANGGERANG VILLAGE IN REDUCING POTENTIAL. 3(1), 251–253. https://doi.org/10.33068/iccd.Vol3.Iss1.352
  29. Netto, A. T., Campostrini, E., Oliveira, J. G. de, & Bressan-Smith, R. E. (2005). Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 104(2), 199–209. https://doi.org/https://doi.org/10.1016/j.scienta.2004.08.013
  30. Prameswari, D., Supriyanto, Saharjo, B. H., Wasis, B., & Pamoengkas, P. (2015). Aplikasi lubang resapan biopori dan Cross Drain untuk Rehabilitasi di Jalan Sarad. Jurnal Penelitian Hutan Dan Konservasi Alam, 12(2), 177–189
  31. Praxedes, S. C., DaMatta, F. M., Loureiro, M. E., G. Ferrão, M. A., & Cordeiro, A. T. (2006). Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environmental and Experimental Botany, 56(3), 263–273. https://doi.org/https://doi.org/10.1016/j.envexpbot.2005.02.008
  32. Priori, S., Pellegrini, S., & Vignozzi, N. (2021). Soil Physical-Hydrological Degradation in the Root-Zone of Tree Crops : Problems and Solutions. Agronomy, 11(68), 1–27. https://doi.org/https://doi.org/10.3390/agronomy 11010068
  33. Reis, A. R., Favarin, J. L., Malavolta, E., Júnior, J. L., & Moraes, M. F. (2009). Photosynthesis, Chlorophylls, and SPAD Readings in Coffee Leaves in Relation to Nitrogen Supply. Communications in Soil Science and Plant Analysis, 40(9–10), 1512–1528. https://doi.org/10.1080/00103620902820373
  34. Rong, Y., Yong-zhong, S. U., Tao, W., & Qin, Y. (2016). Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. Journal of Integrative Agriculture, 15(3), 658–666. https://doi.org/10.1016/S2095-3119(15)61107-8
  35. Siltecho, S., Hammecker, C., Sriboonlue, V., Clermont-Dauphin, C., Trelo-ges, V., Antonino, A. C. D., & Angulo-Jaramillo, R. (2015). Use of field and laboratory methods for estimating unsaturated hydraulic properties under different land uses. Hydrol. Earth Syst. Sci., 19, 1193–1207. https://doi.org/10.5194/hess-19-1193-2015
  36. Silva, R. F. da, Severiano, E. da C., Oliveira, G. C. de, Barbosa, S. M., Peixoto, D. S., Tassinari, D., Silva, B. M., Silva, S. H. G., Dias Júnior, M. de S., & Figueiredo, T. d’Aquino F. R. (2021). Changes in soil profile hydraulic properties and porosity as affected by deep tillage soil preparation and Brachiaria grass intercropping in a recent coffee plantation on a naturally dense Inceptisol. Soil and Tillage Research, 213, 105–127. https://doi.org/https://doi.org/10.1016/j.still.2021.105127
  37. Soil Research Institute. (2009). ANALISIS KIMIA TANAH , TANAMAN , AIR , DAN PUPUK
  38. Solly, E. F., Weber, V., Zimmermann, S., Walthert, L., Hagedorn, F., Schmidt, M. W. I., & Solly, E. F. (2020). A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils. Frontiers in Forest and Global Change, 3(98), 1–12. https://doi.org/10.3389/ffgc.2020.00098
  39. Sudirman, A., & Hartono, J. S. S. (2020). Study on the amount of chlorophyll content and leaf area of Robusta coffee plants with shade trees and fertilizer application in Hanakau Sukau West Lampung. International Conference on Agriculture and Applied Science (ICoAAS), November, 43–45. https://doi.org/https://doi.org/10.2581/icoaas.v1i1.2002
  40. Thai, S., Davídek, T., & Pavlů, L. (2022). Causes clarification of the soil aggregates stability on mulched soil. Soil and Water Research, 2022(2), 91–99. https://doi.org/https://doi.org/10.17221/151/2021-SWR
  41. Uksa, M., Schloter, M., Kautz, T., Athmann, M., Köpke, U., & Fischer, D. (2015). Spatial variability of hydrolytic and oxidative potential enzyme activities in different subsoil compartments. Biology and Fertility of Soils, 51(4), 517–521. https://doi.org/10.1007/s00374-015-0992-5
  42. Valentine, T. A., Hallett, P. D., Binnie, K., Young, M. W., Squire, G. R., Hawes, C., & Bengough, A. G. (2012). Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Annals of Botany, 110(2), 259–270. https://doi.org/10.1093/aob/mcs118
  43. Watiniasih, I. P. C. N. A. A. G. R. D. N. L. (2016). DEKOMPOSISI SAMPAH JANUR KELAPA (Cocos nucifera L.) DAN NIBUNG (Oncosperma tigillarium (Jack) Ridl.) DALAM LUBANG RESAPAN BIOPORI. SIMBIOSIS, 4(2). https://ojs.unud.ac.id/index.php/simbiosis/article/view/28754/17872
  44. Wendel, A. S., Bauke, S. L., & Amelung, W. (2022). Root ‑ rhizosphere ‑ soil interactions in biopores. Plant and Soil, 475(2022), 253–277. https://doi.org/10.1007/s11104-022-05406-4
  45. Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulture, 7(50), 1–36. https://doi.org/https://doi.org/10.3390/horticulturae7030050

Last update:

No citation recorded.

Last update: 2024-12-26 15:03:23

No citation recorded.