skip to main content

Estimasi Kualitas Efluen Air Lindi Unit Stabilisasi Berdasarkan Parameter Biokinetika pada Sistem Konfigurasi Kontak Stabilisasi

1Departemen Teknik Sipil dan Lingkungan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Indonesia

2Program Studi Teknik Lingkungan, Fakultas Arsitektur Lanskap dan Teknologi Lingkungan, Universitas Trisakti, Indonesia

Received: 7 Feb 2023; Revised: 24 Aug 2023; Accepted: 8 Nov 2023; Available online: 4 Feb 2024; Published: 15 Feb 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract

Pengolahan air lindi dibutuhkan untuk mereduksi kontaminan material organik, anorganik, dan mikroorganisme patogen. Pengolahan air lindi secara biologis melalui unit kontak stabilisasi adalah unit yang sangat efektif dipilih terkait kinerja dan faktor nilai ekonomi untuk menyisihkan kandungan polutan organik air lindi. Akan tetapi, kinerja dan pemodelan proses stabilisasi pada unit ini belum dianalisis secara detail untuk implementasi skala lapangan. Penelitian ini bertujuan untuk mengevaluasi kinerja proses stabilisasi berdasarkan variasi waktu detensi (HRT), mengestimasi nilai parameter biokinetika terbaik, dan memprediksi konsentrasi substrat efluen hasil pemodelan. Penelitian ini dilakukan pada skala laboratorium menggunakan tiga variasi HRT, sebesar 4, 5, dan 6 jam dan disimulasikan di dalam model pertumbuhan mikroorganisme Monod, Contois, Blackman, dan Chen-Hashimoto pada kondisi aliran tidak tunak. Penyisihan kontaminan terbaik pada unit stabilisasi berdasarkan hasil analisis kinerja sebesar 82% nitrit, 42% amonia, dan 38% chemical oxygen demand (COD) diperoleh dari HRT 6 jam. Parameter biokinetika terbaik berdasarkan analisis numerik dan uji validasi untuk nilai Ke, Y, μmax, dan Ks dihasilkan berturutturut sebesar 2,05 hari-1; 32,88 mgMLVSS/mgCOD; 0,57 hari-1; dan 24,38 mg/L dari model Monod. Konsentrasi efluen COD rata-rata dari model Monod diestimasi sebesar 206,28 ± 27,39 mg/L untuk HRT 4 jam; 159,25 ± 72,06 mg/L untuk HRT 5 jam; serta 126,32 ± 38,44 mg/L untuk HRT 6 jam. Nilai parameter biokinetika tersebut dapat diimplementasikan untuk perencanaan unit stabilisasi pada konfigurasi kontak stabilisasi air lindi skala lapangan.

Fulltext View|Download
Keywords: air lindi; biokinetika; kontak stabilisasi; model pertumbuhan mikroorganisme; waktu detensi

Article Metrics:

  1. Abba, S. I., & Elkiran, G. (2017). Effluent prediction of chemical oxygen demand from the astewater treatment plant using artificial neural network application. Procedia Computer Science, 120, 156–163. https://doi.org/10.1016/j.procs.2017.11.223
  2. Aho, K., Derryberry, D., & Peterson, T. (2014). Model selection for ecologists : the worldviews of AIC and BIC. Ecology, 95(3), 631–636
  3. Anggraeni, D., Sutanhaji, A. T., & Bambang, R. W. (2014). Pengaruh Volume Lumpur Aktif dengan Proses Kontak Stabilisasi pada Efektivitas Pengolahan Air Limbah Industri Pengolahan Ikan. Jurnal Sumberdaya Alam Dan Lingkungan, 1(3), 6–12
  4. Aragones, D. G., Sanchez-Ramos, D., & Calvo, G. F. (2020). SURFWET: A biokinetic model for surface flow constructed wetlands. Science of the Total Environment, 723, 137650. https://doi.org/10.1016/j.scitotenv.2020.137650
  5. Arnaldos, M., Amerlinck, Y., Rehman, U., Maere, T., Van Hoey, S., Naessens, W., & Nopens, I. (2015). From the affinity constant to the half-saturation index: Understanding conventional modeling concepts in novel wastewater treatment processes. Water Research, 70, 458–470. https://doi.org/10.1016/j.watres.2014.11.046
  6. Bafdal, N., NP, S. D. N., & Amaru, K. (2014). Analisis Rasio Luas Daerah Tangkapan Air (Catchment Area) dan Areal Budidaya Pertanian (Cultivated Area) dalam Desain Model Run Off Management Integrated Farming di Lahan Kering. Jurnal Teknik Sipil, 21(3), 205. https://doi.org/10.5614/jts.2014.21.3.3
  7. Benitez, F. J., Beltran-Heredia, J., Real, F. J., & Gonzalez, T. (1999). Aerobic and anaerobic purification of wine distillery wastewater in batch reactors. Chemical Engineering and Technology, 22(2), 165–172. https://doi.org/10.1002/(sici)1521-4125(199902)22:2<165::aid-ceat165>3.0.co;2-t
  8. Blackman, F. (1905). Optima and limiting factors. Annals of Botany, 67(74), 281–295
  9. Brault, J.-M., Buchauer, K., & Gambrill, M. (2022). Wastewater Treatment and Reuse. In Wastewater Treatment and Reuse. https://doi.org/10.1596/37317
  10. Catruwati, N., Merko, P., Satria, D., & Hanif, M. (2016). Studi Awal Pengolahan Air Lindi dari Gasifikasi Anaerob Landfill Tempat Pembuangan Sampah Akhir Bagendung-Cilegon. Seminar Nasional Mesin Dan Teknologi Kejuruan (SNMTK), 119–123
  11. Chou, Y. C., Lo, S. L., Kuo, J., & Yeh, C. J. (2013). Derivative mechanisms of organic acids in microwave oxidation of landfill leachate. Journal of Hazardous Materials, 254–255(1), 293–300. https://doi.org/10.1016/j.jhazmat.2013.04.011
  12. Chowell, G., Luo, R., Sun, K., Roosa, K., Tariq, A., & Viboud, C. (2020). Real-time forecasting of epidemic trajectories using computational dynamic ensembles. Epidemics, 30(December 2019), 100379. https://doi.org/10.1016/j.epidem.2019.100379
  13. Contois, D. E. (1959). Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures. Journal of General Microbiology, 21(1), 40–50. https://doi.org/10.1099/00221287-21-1-40
  14. Costa, A. M., Alfaia, R. G. de S. M., & Campos, J. C. (2019). Landfill leachate treatment in Brazil – An overview. Journal of Environmental Management, 232(November 2018), 110–116. https://doi.org/10.1016/j.jenvman.2018.11.006
  15. Dai, W., Xu, X., & Yang, F. (2018). High-rate contact stabilization process-coupled membrane bioreactor for maximal recovery of organics from municipal wastewater. Water (Switzerland), 10(7), 116–134. https://doi.org/10.3390/w10070878
  16. Fathurahman, M. (2009). Pemilihan Model Regresi Terbaik Menggunakan Metode Akaike’s Information Criterion dan Schwarz Information Criterion. Jurnal Informatika Mulawarman, 4(3), 56–92
  17. Fitri, I., Mustika, R., & Srie, W. (2007). Penentuan Koefisien Yield (Y) dan Koefisien Endogenous Decay (Kd) Pada Proses Lumpur Aktif Terhadap Air Terproduksi dengan Reaktor Batch. Jurnal Purifikasi, 8, 7–12
  18. Hreiz, R., Latifi, M. A., & Roche, N. (2015). Optimal design and operation of activated sludge processes: State-of-the-art. Chemical Engineering Journal, 281, 900–920. https://doi.org/10.1016/j.cej.2015.06.125
  19. Jasim, N. A. (2020). The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Engineering, 7(1), 1–33. https://doi.org/10.1080/23311916.2020.1723782
  20. Kaur, K., Mor, S., & Ravindra, K. (2016). Removal of chemical oxygen demand from landfill leachate using cow-dung ash as a low-cost adsorbent. Journal of Colloid and Interface Science, 469, 338–343. https://doi.org/10.1016/j.jcis.2016.02.025
  21. Khan, N. A., Khan, S. U., Islam, D. T., Ahmed, S., Farooqi, I. H., Isa, M. H., Hussain, A., Changani, F., & Dhingra, A. (2019). Performance evaluation of column-SBR in paper and pulp wastewater treatment: Optimization and bio-kinetics. Desalination and Water Treatment, 156(April 2018), 204–219. https://doi.org/10.5004/dwt.2019.23775
  22. Monod J. (1942). Recherches sur la Croissance des Cultures Bacteriennes. Paris (FR): Hermann
  23. Lim, J. X., & Vadivelu, V. M. (2014). Treatment of agro based industrial wastewater in sequencing batch reactor: Performance evaluation and growth kinetics of aerobic biomass. Journal of Environmental Management, 146, 217–225. https://doi.org/10.1016/j.jenvman.2014.07.023
  24. Liu, Y., Lin, Y. M., & Yang, S. F. (2003). A thermodynamic interpretation of the Monod equation. Current Microbiology, 46(3), 233–234. https://doi.org/10.1007/s00284-002-3934-z
  25. Panigrahy, N., Barik, M., & Sahoo, N. K. (2020). Kinetics of Phenol Biodegradation by an Indigenous Pseudomonas citronellolis NS1 Isolated from Coke Oven Wastewater . Journal of Hazardous, Toxic, and Radioactive Waste, 24(3), 04020019. https://doi.org/10.1061/(asce)hz.2153-5515.0000502
  26. Rahman, A., Meerburg, F. A., Ravadagundhi, S., Wett, B., Jimenez, J., Bott, C., Al-Omari, A., Riffat, R., Murthy, S., & De Clippeleir, H. (2016). Bioflocculation management through high-rate contact-stabilization: A promising technology to recover organic carbon from low-strength wastewater. Water Research, 104, 485–496. https://doi.org/10.1016/j.watres.2016.08.047
  27. Said, N. I., & Utomo, K. (2011). Pengolahan Air Limbah Domestik Dengan Proses Lumpur Aktif. Jurnal Air Indonesia, 3(2), 160–174
  28. Schmid, C. L., Kennedy, N. M., Ross, N. C., Lovell, K. M., Yue, Z., Morgenweck, J., Cameron, M. D., Bannister, T. D., & Bohn, L. M. (2017). Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell, 171(5), 1165.e13-1175.e13. https://doi.org/10.1016/j.cell.2017.10.035
  29. Shen, J., & Zhu, J. (2016). Kinetics of batch anaerobic co-digestion of poultry litter and wheat straw including a novel strategy of estimation of endogenous decay and yield coefficients using numerical integration. Bioprocess and Biosystems Engineering, 39(10), 1553–1565. https://doi.org/10.1007/s00449-016-1630-9
  30. Suman Raj, D. S., & Anjaneyulu, Y. (2005). Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment. Process Biochemistry, 40(1), 165–175. https://doi.org/10.1016/j.procbio.2003.11.056
  31. Van Loosdrecht, M. C. M., & Henze, M. (1999). Maintenance, endogeneous respiration, lysis, decay and predation. Water Science and Technology, 39(1), 107–117. https://doi.org/10.1016/S0273-1223(98)00780-X
  32. Yang, S. T., Okos, M. R., & Nye, J. C. (1982). Kinetics of Methane Fermentation of Whey. Paper - American Society of Agricultural Engineers, 8, 270–282
  33. Yani, M., & Ratnasari, D. (2019). Penyisihan Polutan dari Air Lindi Tempat Pembuangan Sampah Dengan Metode Presipitasi Struvite: Pengaruh Dosis Presipitan dan pH. Jurnal Teknologi Industri Pertanian, 29(2), 205–212. https://doi.org/10.24961/j.tek.ind.pert.2019.29.2.205
  34. Zamanzadeh, M., Parker, W. J., Verastegui, Y., & Neufeld, J. D. (2013). Biokinetic and molecular studies of methanogens in phased anaerobic digestion systems. Bioresource Technology, 149, 318–326. https://doi.org/10.1016/j.biortech.2013.09.058
  35. Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038
  36. Zhang, Z. P., Show, K. Y., Tay, J. H., Liang, D. T., Lee, D. J., & Jiang, W. J. (2006). Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochemistry, 41(10), 2118–2123. https://doi.org/10.1016/j.procbio.2006.05.021
  37. Zhou, X. H., Liu, J., Song, H. M., Qiu, Y. Q., & Shi, H. C. (2012). Estimation of heterotrophic biokinetic parameters in wastewater biofilms from oxygen concentration profiles by microelectrode. Environmental Engineering Science, 29(6), 466–471. https://doi.org/10.1089/ees.2010.0456

Last update:

No citation recorded.

Last update: 2024-11-20 03:30:52

No citation recorded.