skip to main content

Municipal Waste Characterization and Reduction Potential in Singaraja City

1Regional and Rural Planning, Postgraduate Program, Universitas Mahasaraswati Denpasar, Bali, Indonesia 80233, Indonesia

2Department of Environmental Science, K.R.T. Arts, B.H. Commerce, A.M. Science (KTHM) College, Nashik, Maharashtra, India, India

Received: 20 Sep 2023; Revised: 23 Nov 2023; Accepted: 6 Jan 2024; Available online: 9 Mar 2024; Published: 28 Mar 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract

The Bengkala Landfill serves as the sole waste disposal site in the Buleleng Regency, and its current waste accumulation has exceeded the landfill's capacity. The local government has endeavoured to reduce the influx of waste to the landfill by establishing a Recycling Centre (RC) for waste processing. This research aims to analyse the generation and characteristics of waste in Singaraja City, as well as its recycling potential, to support RC planning. The study's method is to look at how much waste is made and what kinds of things are made from it by using measurements made by the local government of Buleleng Regency in line with the Indonesian National Standard (SNI) 19-3964-1994. The analysis reveals that Singaraja City produces approximately 606.23 kg/day of waste, with a density of 0.244 kg/L. Organic waste dominates, constituting 66.31% of the total waste composition. Food waste and foliage are the highest components of organic waste, underscoring the significance of food waste reduction, including composting. Paper, wood, and plastic contribute 8.23%, 1.41%, and 14.57% of the waste, respectively. The study of waste composition in Singaraja City reveals both opportunities and challenges in waste management and sustainability. Singaraja City can benefit from initiatives such as plastic reduction programmes, glass recycling, and hazardous waste management to achieve sustainable waste practices. Achieving these goals necessitates public education, policy interventions, recycling infrastructure development, and stakeholder collaboration.

Fulltext View|Download
Keywords: Waste generation; Reduction potential; Waste Composition; Waste Management

Article Metrics:

  1. Adnan, H., Ainun, S., & Halomoan, N. (2018). [STUDI KAJIAN DENSITAS SAMPAH BERDASARKAN ALAT ANGKUT DAN SUMBER SAMPAH DI TPA JALUPANG KABUPATEN KARAWANG] [STUDI OF WASTE DENSITY BASED ON CONVEYANCE AND SOURCES OF WASTE IN JALUPANG LANDFILL OF KARAWANG DISTRICT]. In Jurnal Teknik Lingkungan (Vol. 24)
  2. Cecere, G., Bottausci, S., Esposti, A. D., Magrini, C., Mazzi, A., Camana, D., … Rigamonti, L. (2024). The role of life cycle thinking-based methodologies in the development of waste management plans. Waste Management, 173, 109–117. https://doi.org/10.1016/j.wasman.2023.11.005
  3. Cokorda, J., Wijaya, I. M. W., & Paramita, A. A. I. I. (2022). Produksi Kompos melalui Pengelolaan Sampah Rumah Tangga Menggunakan Composter Bag di Desa Ayunan, Kabupaten Badung. Lumbung Inovasi: Jurnal Pengabdian Kepada Masyarakat, 7(4), 479–488. https://doi.org/10.36312/linov.v7i4.824
  4. Consonni, S., Giugliano, M., & Grosso, M. (2005). Alternative strategies for energy recovery from municipal solid waste: Part A: Mass and energy balances. Waste Management, 25(2 SPEC. ISS.), 123–135. Elsevier Ltd. https://doi.org/10.1016/j.wasman.2004.09.007
  5. Dhanya, B. S., Mishra, A., Chandel, A. K., & Verma, M. L. (2020). Development of sustainable approaches for converting the organic waste to bioenergy. Science of the Total Environment, 723. https://doi.org/10.1016/j.scitotenv.2020.138109
  6. Diggle, A., Walker, T. R., & Adams, M. (2023). Examining potential business impacts from the implementation of an extended producer responsibility program for printed paper and packaging waste in Nova Scotia, Canada. Circular Economy, 2(2). https://doi.org/10.1016/j.cec.2023.100039
  7. Dinas Kebersihan dan Pertamanan Kabupaten Buleleng. (2020). Profil TPA Bengkala
  8. Ding, X., Li, Y., Chen, J., Huang, X., Chen, L., & Hu, Z. (2023). Sustainable utilization of finished leather wastes: A novel collagen hydrolysate-based gypsum additive with high-retarding performance. Process Safety and Environmental Protection, 172, 451–461. https://doi.org/10.1016/j.psep.2023.02.040
  9. Feng, S. J., Li, J., Zheng, Q. T., Zhang, M. L., Yu, Y., & Zhao, Y. (2023). Utilization potential of waste residue and dust powder from C&D waste. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02513
  10. Gede, L., Yanthi, E., Rahmawati, P. I., Made, N., & Widiastini, A. (2022). Source Based Waste Management at the Environment Department of Buleleng Regency. Budapest International Research and Critics Institute Journal, 5(3), 20832–20844. https://doi.org/10.33258/birci.v5i3.6102
  11. Habib, M. D., Kaur, P., Sharma, V., & Talwar, S. (2023). Analyzing the food waste reduction intentions of UK households. A Value-Attitude-Behavior (VAB) theory perspective. Journal of Retailing and Consumer Services, 75. https://doi.org/10.1016/j.jretconser.2023.103486
  12. Huang, Q., Wang, Q., Dong, L., Xi, B., & Zhou, B. (2006). The current situation of solid waste management in China. Journal of Material Cycles and Waste Management, 8(1), 63–69. https://doi.org/10.1007/s10163-005-0137-2
  13. Kohli, R. (2016). Management of Flower Waste by Vermicomposting. International Conference on Global Trends in Engineering, Technology and Management, 34–38
  14. Kreith, F., & Tchobanoglous, G. (2002). Handbook of Solid Waste Management. In Waste Management Research (Vol. 13). https://doi.org/10.1006/wmre.1995.0050
  15. Kumar Das, D., & Baishya, P. (2017). Municipal Solid Waste Management: A Case Study of Kamakhya Devi Temple, Assam, India. International Research Journal of Engineering and Technology. Retrieved from www.irjet.net
  16. Kuniyal, J. C., Jain, A. P., & Shannigrahi, A. S. (2003). Solid waste management in Indian Himalayan tourists’ treks: A case study in and around the Valley of Flowers and Hemkund Sahib. Waste Management, 23(9), 807–816. https://doi.org/10.1016/S0956-053X(03)00027-8
  17. Leal Da Cruz Silva, T., Santos Carvalho, E. A., Sales Barreto, G. N., Perim da Silva, T. B., João da Cunha Demartini, T., & Fontes Vieira, C. M. (2023). Characterization of artificial stone developed with granite waste and glass waste in epoxy matrix. Journal of Materials Research and Technology, 26, 2528–2538. https://doi.org/10.1016/j.jmrt.2023.08.045
  18. Lomelí-Ramírez, M. G., Anda, R. R., Satyanarayana, K. G., Bolzon de Muniz, G. I., & Iwakiri, S. (2018). Comparative Study of the Characteristics of Green and Brown Coconut Fibers for the Development of Green Composites. BioResources, 13(1). https://doi.org/10.15376/biores.13.1.1637-1660
  19. Mahmood Ali, A., Khan, A., Shahbaz, M., Imtiaz Rashid, M., Imran, M., Shahzad, K., & Binti Mahpudz, A. (2023). A renewable and sustainable framework for clean fuel towards circular economy for solid waste generation in leather tanneries. Fuel, 351. https://doi.org/10.1016/j.fuel.2023.128962
  20. Martikkala, A., Mayanti, B., Helo, P., Lobov, A., & Ituarte, I. F. (2023). Smart textile waste collection system – Dynamic route optimization with IoT. Journal of Environmental Management, 335. https://doi.org/10.1016/j.jenvman.2023.117548
  21. Milbrandt, A., Zuboy, J., Coney, K., & Badgett, A. (2024). Paper and cardboard waste in the United States: Geographic, market, and energy assessment. Waste Management Bulletin, 2(1), 21–28. https://doi.org/10.1016/j.wmb.2023.12.002
  22. MOELLER, D. W. (2019). Solid Waste. In Environmental Health, Third Edition. https://doi.org/10.2307/j.ctvjz80w7.13
  23. Ng, K. S., & Yang, A. (2023). Development of a system model to predict flows and performance of regional waste management planning: A case study of England. Journal of Environmental Management, 325. https://doi.org/10.1016/j.jenvman.2022.116585
  24. Nyberg, B., Harris, P. T., Kane, I., & Maes, T. (2023). Leaving a plastic legacy: Current and future scenarios for mismanaged plastic waste in rivers. Science of The Total Environment, 869, 161821. https://doi.org/10.1016/j.scitotenv.2023.161821
  25. Paramita, W., Hartono, D. M., & Soesilo, T. E. B. (2018). Sustainability of Refuse Derived Fuel Potential from Municipal Solid Waste for Cement’s Alternative Fuel in Indonesia (A Case at Jeruklegi Landfill, in Cilacap). IOP Conference Series: Earth and Environmental Science, 159(1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/159/1/012027
  26. Putu, L., Udayani, D., Suprihatin, I. E., & Made Gunamantha, I. (2020). EFEKTIVITAS PENGOLAHAN LINDI (TPA BENGKALA) DENGAN KOMBINASI TRICKLING FILTER DAN ELEKTROKOAGULASI. In Cakra Kimia (Indonesian E-Journal of Applied Chemistry (Vol. 8)
  27. Rajendran SM, & Sekaran V. (2015). Generation, Characteristics and Treatment of Municipal Wastewater in Madurai City. International Journal of Civil Engineering and Technology, 6(69), 58–70
  28. Scarlat, N., Motola, V., Dallemand, J. F., Monforti-Ferrario, F., & Mofor, L. (2015). Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renewable and Sustainable Energy Reviews, 50, 1269–1286. https://doi.org/10.1016/j.rser.2015.05.067
  29. SNI 19-3964-1994. (1994). Metode pengambilan dan pengukuran contoh timbulan dan komposisi sampah perkotaan. 16. https://doi.org/10.2989/16085906.2013.815406
  30. SURYAWAN, I. W. K., RAHMAN, A., SEPTIARIVA, I. Y., SUHARDONO, S., & WIJAYA, I. M. W. (2020). Life Cycle Assessment of Solid Waste Generation During and Before Pandemic of Covid-19 in Bali Province. Journal of Sustainability Science and Management, 16(1), 11–21. https://doi.org/10.46754/jssm.2021.01.002
  31. Turan, N. G., Baki, O. G., & Ergun, O. N. (2016). Municipal solid waste characteristics and management in Sinop, Turkey. Environmental Engineering and Management Journal, 15(1), 13–18. https://doi.org/10.30638/eemj.2016.002
  32. Tyagi, V. K., Kapoor, A., Arora, P., Banu, J. R., Das, S., Pipesh, S., & Kazmi, A. A. (2021). Mechanical-biological treatment of municipal solid waste: Case study of 100 TPD Goa plant, India. Journal of Environmental Management, 292. https://doi.org/10.1016/j.jenvman.2021.112741
  33. Ulhasanah, N., Sarwono, A., Yosafaat, M., Filippi, D., Suryawan, I. W. K., & Wijaya, I. M. W. (2022). Composting of Banana Leaves and Coconut Leaves Using EM4 Bioactivator. Advances in Tropical Biodiversity and Environmental Sciences, 6(1), 8. https://doi.org/10.24843/atbes.2022.v06.i01.p02
  34. Weber, S., Weber, O., Habib, K., & Dias, G. M. (2023). Textile waste in Ontario, Canada: Opportunities for reuse and recycling. Resources, Conservation and Recycling, 190. https://doi.org/10.1016/j.resconrec.2022.106835
  35. Wijaya, I. (2014). DESIGN OF SOLID WASTE MANAGEMENT FACILITIES OF EKS PELABUHAN BULELENG BEACH RESORT, BULELENG REGENCY. Institut Teknologi Sepuluh Nopember Surabaya, Surabaya
  36. Wijaya, I. M. W., & Putra, I. K. A. (2021). POTENSI DAUR ULANG SAMPAH UPACARA ADAT DI PULAU BALI. Jurnal Ecocentrism, 1(1), 1–8
  37. Wijaya, I. M. W. W., Indunil, K. B., Ranwella, S., Revollo, E. M., Ketut, L., Widhiasih, S., … Junanta, P. P. (2021). Recycling Temple Waste into Organic Incense as Temple Environment Preservation in Bali Island. 19, 365–371. https://doi.org/10.14710/jil.19.2.365
  38. Wijaya, I. M., Wiratama, I. G. N. M., Putra, I. K. A., & Aris, A. (2023). Refuse Derived Fuel Potential Production from Temple Waste as Energy Alternative Resource in Bali Island. Journal of Ecological Engineering, 24(4), 288–296. https://doi.org/10.12911/22998993/161015
  39. Yousefi, M., Khosravani, F., Farzadkia, M., Mahvi, A. H., Kermani, M., Esrafili, A., & Gholami, M. (2023). Sustainable management of alkaline battery waste in developing countries by waste reduction and metal recovery development: A cost-benefit study based on waste flow analysis to select the optimum scenario. Arabian Journal of Chemistry, 16(10). https://doi.org/10.1016/j.arabjc.2023.105140

Last update:

No citation recorded.

Last update: 2024-04-27 08:44:24

No citation recorded.