skip to main content

Analisis Multikriteria dalam Pemilihan Teknologi Pengolahan Sampah Plastik untuk Skala Bank Sampah di Jakarta Pusat

1Environmental Science, School of Environmental Science, University Indonesia, Indonesia, Indonesia

2Environmental Science, School of Environmental Science, Universitas Indonesia, Indonesia, Indonesia

3Indonesian Environmental Scientists Association (IESA), Jakarta, Indonesia, Indonesia

Received: 24 Nov 2023; Revised: 16 Jun 2024; Accepted: 1 Jul 2024; Available online: 21 Jan 2025; Published: 27 Jan 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Sebagai pusat pemerintahan dan bisnis, Jakarta Pusat mengumpulkan jumlah sampah plastik terbanyak di bank sampah dibandingkan dengan kota administrasi DKI Jakarta lainnya, yaitu mencapai 95.760 kg/bulan pada tahun 2021. Jumlah ini meningkat dari tahun 2020 yang mencapai sekitar 76.471 kg/bulan. Meskipun demikian, pada praktik sebagian besar bank sampah di Jakarta Pusat belum menerapkan teknologi yang dapat menunjang keberlanjutan pengelolaan sampah plastik. Oleh karena itu, penelitian ini bertujuan untuk mengidentifikasi karakteristik sampah plastik yang dikumpulkan di bank sampah dan memilih teknologi pengolahan sampah plastik yang ideal dengan mempertimbangkan 4 (empat) kriteria. Metode analisis yang digunakan adalah kombinasi AHP dan TOPSIS. Hasil penelitian menunjukkan bahwa rata-rata jumlah sampah plastik yang dikumpulkan di bank sampah adalah 60-250 kg/hari yang didominasi oleh jenis botol plastik. Hasil perhitungan nilai bobot menunjukkan bahwa kriteria yang dianggap penting secara berurutan adalah lingkungan (0,56), ekonomi (0,21), sosial (0,16), dan teknis (0,07). Berdasarkan nilai tersebut diperoleh alternatif teknologi pengolahan sampah plastik yang ideal untuk skala bank sampah adalah mesin press hidraulik (C*=0,648). Melalui hasil ini, diharapkan pemilihan teknologi pengolahan sampah plastik di bank sampah dapat mempertimbangkan berbagai kriteria yang memberikan manfaat, baik secara praktis maupun ekonomis.

Fulltext View|Download
Keywords: AHP; bank sampah; sampah plastik; teknologi pengolahan; TOPSIS
Funding: Universitas Indonesia under contract PKS-0086/UN2.F13.D1/PPM.00.00/2022

Article Metrics:

  1. Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2021). Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renewable Energy, 178, 162–183. https://doi.org/10.1016/j.renene.2021.06.031
  2. Amini, A., & Alinezhad, A. (2011). Sensitivity Analysis of TOPSIS Technique: The Results of Change in the Weight of One Attribute on the Final Ranking of Alternatives. Journal of Optimization in Industrial Engineering, 7(2011), 23–28
  3. Ariyanto, A., Guntoro, Hamzah, & David Setiawan. (2022). Pelatihan Perawatan Mesin Bagi Pengelola Bank Sampah Universitas Lancang Kuning. Dinamisia : Jurnal Pengabdian Kepada Masyarakat, 6(2), 559–563. https://doi.org/10.31849/dinamisia.v6i2.9191
  4. Asteria, D., & Heruman, H. (2016). Bank Sampah Sebagai Alternatif Strategi Pengelolaan Sampah Berbasis Masyarakat di Tasikmalaya. Jurnal Manusia Dan Lingkungan, 23(1), 136
  5. Boyle, K., & Örmeci, B. (2020). Microplastics and Nanoplastics in the Freshwater and Terrestrial Environment: A Review. Water, 12(9), 2633. https://doi.org/10.3390/w12092633
  6. BPS. (2021). Kepadatan Penduduk menurut Provinsi (jiwa/km2), 2019-2021. Retrieved from https://www.bps.go.id/indicator/12/141/1/kepadatan-penduduk-menurut-provinsi.html
  7. BPS. (2022). Volume Sampah yang Terangkut per Hari Menurut Jenis Sampah di Provinsi DKI Jakarta (Ton), 2020-2022. Retrieved from https://jakarta.bps.go.id/indicator/152/916/1/volume-sampah-yang-terangkut-per-hari-menurut-jenis-sampah-di-provinsi-dki-jakarta.html
  8. Çelikbilek, Y., & Tüysüz, F. (2020). An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics, 7(2), 281–300. https://doi.org/10.1080/23270012.2020.1748528
  9. Chaerul, M., Agustina, E., & Widyarsana, I. M. W. (2020). Analisis Multikriteria dalam Pemilihan Sistem Pemrosesan Sampah di Kabupaten Klungkung, Provinsi Bali. Jurnal Teknologi Lingkungan, 21(2), 131–137. https://doi.org/10.29122/jtl.v21i2.4142
  10. Dinas Lingkungan Hidup DKI Jakarta. (2021a). DATA SAMPAH 2019-2021
  11. Dinas Lingkungan Hidup DKI Jakarta. (2021b). LAPORAN BANK SAMPAH JAKARTA PUSAT MARET 2021
  12. Fatimah, T., Aryani, P. F., & Novita Ita. (2013). Pemodelan Sistem Untuk Aplikasi Pengelolaan Bank Sampah Matahari RW 08 Kelurahan Pedurenan. Telematika MKOM, 5
  13. Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), 3–8. https://doi.org/10.1126/sciadv.1700782
  14. Hidayat, Y. A., Kiranamahsa, S., & Zamal, M. A. (2019). A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy, 7(3), 350–370. https://doi.org/10.3934/ENERGY.2019.3.350
  15. Huang, J., Veksha, A., Chan, W. P., Giannis, A., & Lisak, G. (2021). Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes. Renewable and Sustainable Energy Reviews, 154(October 2021), 111866. https://doi.org/10.1016/j.rser.2021.111866
  16. Hwang, C.-L., & Yoon, K. (1981). Methods for Multiple Attribute Decision Making. https://doi.org/10.1007/978-3-642-48318-9_3
  17. Joel, S., Molua Ernest, L., & Ajapnwa, A. (2019). Application of analytic hierarchy process decision model for solid waste management strategy in Yaoundé, Cameroon. Journal of Solid Waste Technology and Management, 45(4), 502–517. https://doi.org/10.5276/JSWTM/2019.502
  18. KLHK. (2020). Rencana Strategis Direktorat Jenderal Pengelolaan Sampah Limbah dan Bahan Beracun Berbahaya Kementrian Lingkungan Hidup dan Kehutanan Tahun 2020-2024. Retrieved from https://www.menlhk.go.id/uploads/site/post/1610950430.pdf
  19. Letcher, T. M. (2020). Introduction to plastic waste and recycling. In Plastic Waste and Recycling (pp. 3–12). https://doi.org/10.1016/B978-0-12-817880-5.00001-3
  20. Mahesh Kumar, G., Irshad, A., Raghunath, B. V., & Rajarajan, G. (2016). Waste Management in Food Packaging Industry. https://doi.org/10.1007/978-3-319-27228-3_24
  21. Menon, R. R., & Ravi, V. (2022). Using AHP-TOPSIS methodologies in the selection of sustainable suppliers in an electronics supply chain. Cleaner Materials, 5, 100130. https://doi.org/10.1016/j.clema.2022.100130
  22. Ncube, L. K., Ude, A. U., Ogunmuyiwa, E. N., Zulkifli, R., & Beas, I. N. (2021). An overview of plasticwaste generation and management in food packaging industries. Recycling, 6(1), 1–25. https://doi.org/10.3390/recycling6010012
  23. Neo, E. R. K., Soo, G. C. Y., Tan, D. Z. L., Cady, K., Tong, K. T., & Low, J. S. C. (2021). Life cycle assessment of plastic waste end-of-life for India and Indonesia. Resources, Conservation and Recycling, 174(July), 105774. https://doi.org/10.1016/j.resconrec.2021.105774
  24. Nurjayati, R., Widyarsana, I. M. W., & Kurniasari, O. (2023). Multi-criteria analysis for solid waste management system in Indramayu coastal area. IOP Conference Series: Earth and Environmental Science, 1201(1). https://doi.org/10.1088/1755-1315/1201/1/012022
  25. Okunola A, A., Kehinde I, O., Oluwaseun, A., & Olufiropo E, A. (2019). Public and Environmental Health Effects of Plastic Wastes Disposal: A Review. Journal of Toxicology and Risk Assessment, 5(2). https://doi.org/10.23937/2572-4061.1510021
  26. Putri, A. R., Fujimori, T., & Takaoka, M. (2018). Plastic waste management in Jakarta, Indonesia: evaluation of material flow and recycling scheme. Journal of Material Cycles and Waste Management, 20(4), 2140–2149. https://doi.org/10.1007/s10163-018-0753-2
  27. Ritchie, H., & Roser, M. (2018). Plastic Pollution. Retrieved November 22, 2021, from Our World in Data website: https://ourworldindata.org/plastic-pollution
  28. Saaty, R. W. (1987). The analytic hierarchy process-what it is and how it is used. Mathematical Modelling, 9(3–5), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8
  29. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal Servces Science, 1(1), 83–98. https://doi.org/10.1108/JMTM-03-2014-0020
  30. Sarkar, B. (2011). Fuzzy decision making and its applications in cotton fibre grading. In Soft Computing in Textile Engineering (pp. 353–383). https://doi.org/10.1533/9780857090812.5.353
  31. Shams, M., Alam, I., & Mahbub, M. S. (2021). Plastic pollution during COVID-19: Plastic waste directives and its long-term impact on the environment. Environmental Advances, 5, 100119. https://doi.org/10.1016/j.envadv.2021.100119
  32. SIPSN. (2020). CAPAIAN KINERJA PENGELOLAAN SAMPAH. Retrieved November 22, 2021, from https://sipsn.menlhk.go.id/sipsn/
  33. SIPSN. (2023). Komposisi Sampah Berdasarkan Jenis Sampah. Retrieved from https://sipsn.menlhk.go.id/sipsn/public/data/komposisi
  34. SIPSN KLHK. (2023). TIMBULAN SAMPAH. Retrieved September 18, 2023, from https://sipsn.menlhk.go.id/sipsn/public/data/timbulan
  35. Tyllianakis, E., & Ferrini, S. (2021). Personal attitudes and beliefs and willingness to pay to reduce marine plastic pollution in Indonesia. Marine Pollution Bulletin, 173, 113120. https://doi.org/10.1016/j.marpolbul.2021.113120
  36. UPST DLH DKI Jakarta. (n.d.). Data-Data TPST Bantargebang. Retrieved from https://upstdlh.id/tpst/data
  37. Zoma, F., & Sawadogo, M. (2023). A multicriteria approach for biomass availability assessment and selection for energy production in Burkina Faso: A hybrid AHP-TOPSIS approach. Heliyon, 9(10), e20999. https://doi.org/10.1016/j.heliyon.2023.e20999
  38. Zulkia, D. R. (2023). Pemanfaatan Mesin Pencacah dan Mesin Press sebagai Alat Pengolah Sampah Menjadi Produk Bernilai Ekonomis. Jurnal Teknik Mesin UBB, 9(1), 23–29

Last update:

No citation recorded.

Last update: 2025-01-29 20:17:21

No citation recorded.