skip to main content

Phytoremediation of Mercury and Cyanide Contaminated Soils by Physic Nut (Jatropha curcas L.) and Citronella Grass (Cymbopogon nardus)

1Department of Mining Engineering, Faculty of Science and Technology, State Islamic University Syarif Hidayatullah Jakarta, Indonesia, Indonesia

2Department of Chemistry, Faculty of Science and Technology, State Islamic University Syarif Hidayatullah Jakarta, Indonesia, Indonesia

3Department of Agriculture, Faculty of Science and Technology, State Islamic University Syarif Hidayatullah Jakarta, Indonesia, Indonesia

Received: 8 Jan 2024; Revised: 21 Apr 2024; Accepted: 9 Jul 2024; Available online: 11 Nov 2024; Published: 11 Nov 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract

Mercury and cyanide are compounds that have the potential to pollute the environment, both of which are found in the tailing waste of artisanal and small-scale gold mining (ASGM). The purpose of this study was to determine the ability of physic nut (Jatropha curcas L.) and citronella grass (Cymbopogon nardus) to absorb mercury and cyanide in soils polluted with tailings waste based on the value of transfer factors. During this research stage, the remediation of soil polluted with amalgamation tailings and cyanide tailings was carried out for 28 days. Soil sampling was carried out every seven days for 28 days, while root and leaf sampling was carried out on day 28, analysis of mercury and cyanide content in soil and plants using atomic absorption spectroscopy (AAS) and UV-visible spectrophotometer. After 28 days of remediation, mercury and cyanide levels may decrease in soil by 93.7% for mercury and 81.8% for cyanide. The decrease can be caused by absorption and accumulation in plants, where mercury and cyanide accumulate more in physic nut than citronella grass. Physic nut and citronella grass have a transfer factor value of <1 for mercury and cyanide, so they are an excluder plant, except for the accumulation of mercury in physic nut from cyanide tailings soil, which has a transfer factor value of >1, which is an accumulator plant.

Fulltext View|Download
Keywords: physic nut; tailing waste; mercury; citronella grass; cyanid

Article Metrics:

  1. Abobatta, W. F. (2019). Jatropa curcas: an overview. Journal of Advances in Agriculture, 10, 1650–1656
  2. Adinata, D. Y., Raeleksi, A., & Kusdarini, E. (2015). Identifikasi Limbah Pengolahan Emas Dan Kualitas Air Di Sekitar Penambangan Emas Rakyat Jampang Kulon, Desa Kertajaya, Kabupaten Sukabumi, Jawa Barat. Seminar Nasional Sains Dan Teknologi Terapan III, 503–511
  3. Alì, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals - Concepts and applications. Chemosphere, 91
  4. Amalia, V., Rianty, A. N., Rohmatulloh, Y., & Hadisantoso, E. P. (2020). Optimasi Digesti Asam Pada Analisis Merkuri (Hg) Dalam Sedimen Dengan Menggunakan Teknik Vapor Generation Accessory-Atomic Absorption Spectrophotometer (VGA-AAS). Al-Kimiya, 7(2), 67–74. https://doi.org/10.15575/ak.v7i2.6613
  5. Anggraini, R., Hairani, R., & Panggabean, A. S. (2018). Validasi Metode Penentuan Hg pada Sampel Waste Water Treatment Plant dengan Menggunakan Teknik Bejana Uap Dingin Spektrofotometer Serapan Atom (CV-AAS). Jurnal Kimia Mulawarman, 16(1), 10
  6. Anugroho, F., Kurniati, E., & Effendi, B. A. P. (2020). Potensi Fitoremediasi Tanah Tercemar Timbal (Pb) Dengan Penambahan EDTA Menggunakan Rumput Raja (Pennisetum purpuroides). Jurnal Sumberdaya Alam Dan Lingkungan, 7(1), 1–8. https://doi.org/10.21776/ub.jsal.2020.007.01.1
  7. Arisanti, D., Rasyid, N. Q., & Nasir, M. (2018). Analisis Kadar Sianida Pada Rebung Berdasarkan Volume Ukuran Dari Kecamatan Bajeng Kabupaten Gowa. Indo. J. Chem. Res., 6(1), 6–11. https://doi.org/10.30598//ijcr.2018.6-dew
  8. Arisusanti, R. J., & Purwani, K. I. (2013). Pengaruh mikoriza Glomus fasciculatum terhadap akumulasi logam timbal (Pb) pada tanaman Dahlia pinnata. Jurnal Sains Dan Seni ITS, 2(2)
  9. Au, W. Y., Yu, X. Z., & Gu, J. D. (2018). Phytoremediation of cyanide and iron cyanide complexes and the mechanisms involved. Applied Environmental Biotechnology, 3(1), 53–60. https://doi.org/10.26789/AEB.2018.01.002
  10. Borolla, S. M., Mariwy, A., & Manuhutu, J. (2019). Fitoremediasi Tanah Tercemar Logam Berat Merkuri (Hg) Menggunakan Tumbuhan Kersen (Muntingia Calabua L) dengan Sistem Reaktor. Molluca Journal of Chemistry Education (MJoCE), 9(2), 78–89. https://doi.org/10.30598/mjocevol9iss2pp78-89
  11. Chang, F. C., Ko, C. H., Tsai, M. J., Wang, Y. N., & Chung, C. Y. (2014). Phytoremediation of heavy metal contaminated soil by Jatropha curcas. Ecotoxicology, 23(10), 1969–1978. https://doi.org/10.1007/s10646-014-1343-2
  12. Chen, J., & Yang, Z. M. (2012). Mercury toxicity, molecular response and tolerance in higher plants. BioMetals, 25
  13. Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 8, 309–326. https://doi.org/10.1016/j.eti.2017.08.002
  14. Dadashi, S., Sepanlou, M. G., & Mirnia, S. K. (2019). Influence organic compost compounds on soil chemical and physical properties. International Journal of Human Capital in Urban Management, 4(1)
  15. Dulanlebit, Y. H., Unwakoly, S., & Sangadji, R. P. (2021). Studi Potensi Pteris vitata, Amaranthus spinosus, Ipomoea reptanspoir sebagai Fitoremediator Tanah Tercemar Merkuri (Hg). Molluca Journal of Chemistry Education (MJoCE), 11(1), 32–38. https://doi.org/10.30598/mjocevol11iss1pp32-38
  16. Flematti, G. R., Waters, M. T., Scaffidi, A., Merritt, D. J., Ghisalberti, E. L., Dixon, K. W., & Smith, S. M. (2013). Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Molecular Plant, 6(1), 29–37. https://doi.org/10.1093/mp/sss132
  17. Hindersah, R., Risamasu, R., Kalay, A. M., Dewi, T., & Makatita, I. (2018). Mercury contamination in soil, tailing and plants on agricultural fields near closed gold mine in Buru Island, Maluku. Journal of Degraded and Mining Lands Management, 5(2), 1027–1034. https://doi.org/10.15243/jdmlm.2018.052.1027
  18. Israila, Y. Z., Bola, A. E., Emmanuel, G. C., & Ola, I. S. (2015). Phytoextraction of heavy metals by Vetivera zizanioides, Cymbopogon citrates and Helianthus annuls. Am J Appl Chem, 3(1), 1–5
  19. Juhriah, & Alam, M. (2016). Fitoremediasi logam berat merkuri (hg) pada tanah tanaman Celosia plumosa (voss) burv. Jurnal Biologi Makasar (Bioma), 1(1), 1–8
  20. Kaur, H., Bhardwaj, U., & Kaur, R. (2021). Cymbopogon nardus essential oil: a comprehensive review on its chemistry and bioactivity. Journal of Essential Oil Research, 33(3), 205–220. https://doi.org/10.1080/10412905.2021.1871976
  21. Khalid, K. M., & Ganjo, D. G. A. (2021). Native aquatic plants for phytoremediation of metals in outdoor experiments: implications of metal accumulation mechanisms, Soran City-Erbil, Iraq. International Journal of Phytoremediation, 23(4), 374–386. https://doi.org/10.1080/15226514.2020.1815645
  22. Kilikily, D., Mariwy, A., & Sunarti. (2020). Studi Akumulasi Logam Berat Merkuri (Hg) oleh Tanaman Trembesi (Samanea saman). Science Map Journal, 2(2), 85–89
  23. Kumar, R., Saha, S., Dhaka, S., Kurade, M. B., Kang, C. U., Baek, S. H., & Jeon, B. H. (2017). Remediation of cyanide-contaminated environments through microbes and plants: a review of current knowledge and future perspectives. Geosystem Engineering, 20(1), 28–40. https://doi.org/10.1080/12269328.2016.1218303
  24. Laboratorium Jasa Pengujian dan Sertifikasi IPB. (2015). IK.LP-03.25-LT.1.0 (Kadar Sianida Air). Bogor
  25. Laboratorium Jasa Pengujian dan Sertifikasi IPB. (2015). IK.LP-04.12-LT-1.0 (Kadar Logam Merkuri pada Pakan Metode AAS). Bogor
  26. Mariwy, A., Dulanlebit, Y. H., & Yulianti, F. (2020). Studi Akumulasi Logam Berat Merkuri menggunakan Tanaman Awar-Awar (Ficus Septica Burm F). Indo. J. Chem. Res, 2020, 7(2), 159-169 STUDI, 7(2), 159–169
  27. Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Enamorado-Montes, G., & Díez, S. (2016). Mercury uptake and effects on growth in Jatropha curcas. Journal of Environmental Sciences (China), 48, 120–125. https://doi.org/10.1016/j.jes.2015.10.036
  28. Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58–63. https://doi.org/10.1016/j.chemosphere.2014.12.073
  29. Mirdat, Patadungan, Y. S., & Isrun. (2013). Status Logam Berat Merkuri (Hg) dalam Tanah pada Kawasan Pengolahan Tambang Emas Di Kelurahan Poboya, Kota Palu. Jurnal Agrotekbis, 1(2)
  30. Moldovan, O. T., Meleg, I. N., Levei, E., & Terente, M. (2013). A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators, 24
  31. Patandungan, A., Syamsidar, H., & Aisyah. (2016). Fitoremediasi Tanaman Akar Wangi ( Vetiver zizanioides ) terhadap Tanah Tercemar Logam Kadmium ( Cd ) pada Lahan TPA Tamangapa Antang Makassar. Al-Kimia, 4(2), 8–21
  32. Pranoto, B. S. M., & Budianta, W. (2020). Phytoremediation of Heavy Metals Contaminated Soil in Artisanal Gold Mining at Selogiri, Wonogiri District, Central Java, Indonesia. Journal of Applied Geology, 5(2), 64. https://doi.org/10.22146/jag.54586
  33. Prasetiawati, R., Khairani, W. N., J, E. C., & Lubis, N. (2022). Optimasi Reduktan pada Penetapan Kadar Merkuri (Hg) pada Sediaan Krim Pemutih Wajah Yang Dijual Secara Online. Dalton : Jurnal Pendidikan Kimia Dan Ilmu Kimia, 5(1), 60. https://doi.org/10.31602/dl.v5i1.6286
  34. Pratiwi, R. S., Nuraini, Y., & Handayanto, E. (2016). Pemanfaatan Tumbuhan Liar Lindernia Crustacea salam Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas Skala Kecil. Jurnal Tanah Dan Sumberdaya Lahan, 3(1), 261–267. Retrieved from http://jtsl.ub.ac.id
  35. Prawira, R., Syekhfani, & Kusumarini, N. (2018). Pengaruh Pemberian Amonium Tiosulfat dan Kompos Terhadap Serapan Emas (Au) Tanaman Akar Wangi (Vetivera zizanioides) pada Tailing Jampang Kulon Kabupaten Sukabumi Jawa Barat. Jurnal Tanah Dan Sumberdaya Lahan, 5(2), 911–919. Retrieved from http://jtsl.ub.ac.id
  36. Priherdityo, E., Susanto, S., & Chadirin, Y. (2016). Pengaturan Intensitas Larutan Hara terhadap Pertumbuhan Tanaman Akar Wangi (Vetiveria zizanioides L.) yang Dibudidayakan Secara Aeroponik. Bul. Agrohorti, 4(1), 104–112. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26849997%0Ahttp://doi.wiley.com/10.1111/jne.12374
  37. Puspita, A. D., Santoso, A., & Yulianto, B. (2014). Studi akumulasi logam timbal (Pb) dan efeknya terhadap kandungan klorofil daun mangrove rhizophora mucronata. Journal of Marine Research, 3(1)
  38. Puspita, R. F., Prasetya, A., & Rahayuningsih, E. (2019). Penurunan Logam Hg dalam Air Menggunakan Sistem Sub-Surface Flow Constructed Wetland: 44 Studi Efektivitas. Jurnal Rekayasa Proses, 13(1), 41–46
  39. Ratnawati, R., & Fatmasari, R. D. (2018). Fitoremediasi Tanah Tercemar Logam Timbal (Pb) Menggunakan Tanaman Lidah Mertua (Sansevieria Trifasciata) dan Jengger Ayam (Celosia Plumosa). Al-Ard: Jurnal Teknik Lingkungan, 3(2), 62–69. https://doi.org/10.29080/alard.v3i2.333
  40. Raya, I., & Rahmah, R. (2012). The Bioaccumulation of Cd (ii) Ions on Euchema Cottoni Seaweed Bioakumulasi Ion Cd (ii) Pada Rumput Laut Euchema Cottoni. JICoR: Journal of Indonesian Coral Reefs, 13(2)
  41. Rohaya, U., Ibrahim, N., & Jamaluddin, J. (2017). Analisis kandungan merkuri (Hg) pada krim pemutih wajah tidak terdaftar yang beredar di Pasar Inpres Kota Palu. Jurnal Farmasi Galenika (Galenika Journal of Pharmacy), 3(1)
  42. Salimon, J., Abdullah, B. M., & Salih, N. (2012). Rubber (Hevea brasiliensis) seed oil toxicity effect and Linamarin compound analysis. Lipids in Health and Disease, 11, 1–8. https://doi.org/10.1186/1476-511X-11-74
  43. Siahaan, Bonauli Christianoyd Utami, S. R., & Handayanto, E. (2014). Fitoremediasi Tanah Tercemar Merkuri Menggunakan Lindernia crustacea, Digitaria radicosaa, dan Cyperus rotundus serta Pengaruhnya Terhadap Pertumbuhan dan Produksi Tanaman Jagung. Jurnal Tanah Dan Sumberdaya Lahan Vol 1 No 2: 35-51, 2014, 1(2), 35–51
  44. Sidauruk, L., & Sipayung, P. (2015). Fitoremediasi Lahan Tercemar di Kawasan Industri Medan dengan Tanaman Hias. Jurnal Pertaniak Tropik, 2(2), 178–186
  45. Suci, W. P., Mariwy, A., & Manuhutu, J. B. (2020). Analisis Kadar Mekuri (Hg) pada Tanaman Padi (Oryza sativa L.) di Area Persawahan Desa Grandeng Kecamatan Lolonh Guba Pulau Buru. Molluca Journal of Chemistry Education (MJoCE), 10(1), 8–18. https://doi.org/10.30598/mjocevol10iss1pp8-18
  46. Sugiono, C., Nuraini, Y., & Handayanto, E. (2014). Potensi Cyperus kyllingia Endl. untuk Fitoremediasi Tanah Tercemar Merkuri Limbah Tambang Emas. Jurnal Tanah Dan Sumberdaya, 1(1), 1–8. Retrieved from http://jtsl.ub.ac.id/index.php/jtsl/article/view/94
  47. Sulastri, Y. S., Edison, P., & Tampubolon, K. (2019). Evaluasi Kemampuan Beberapa Jenis Tanaman Sebagai Fitoremediasi Logam Berat Kadmium. Jurnal Pertaniak Tropik, 6(1), 62–71. Retrieved from https://jurnal.usu.ac.id/index.php/Tropik%0APengaruh
  48. Sumarjono, E., Aryanto, R., Purwiyono, T. T., & Subandrio. (2020). Topografi sebagai Faktor Pengontrol Terhadap Penyebaran Merkuri Limbah Pengolahan Bijih Emas dengan Metode Amalgamasi pada Sedimen Sungai. Prosiding Seminar Nasional Pakar Ke 3
  49. Tang, C., Chen, Y., Zhang, Q., Li, J., Zhang, F., & Liu, Z. (2019). Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals. Ecotoxicology and Environmental Safety, 176(January), 42–49. https://doi.org/10.1016/j.ecoenv.2019.03.078
  50. Ultra, V. U., Ngwako, K. M., & Eliason, P. (2022). Physiological Responses, Growth, and Heavy Metal Accumulation of Citronella (Cymbopogon nardus Rendle. ) in Cu-Ni Mine Tailings as Affected by Soil Amendments. Philippine Journal of Science, 151(3), 1241–1254. https://doi.org/10.56899/151.03.36
  51. Ustiatik, R., Nurfitriani, S., Fiqri, A., & Handayanto, E. (2020). The use of mercury-resistant bacteria to enhance phytoremediation of soil contaminated with small-scale gold mine tailing. Nature Environment and Pollution Technology, 19(1), 253–261
  52. Van Oosten, M. J., & Maggio, A. (2014). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environ. Exp. Bot., 111
  53. Wang, J., Feng, X., & Anderson, C. W. . (2013). Thiosulphate assisted phytoextraction of mercury contaminated soils at the Wanshan Mercury Mining District, Southwest China J. Journal Degraded And Mining Lands Management, 1(1)
  54. Wang, J., Feng, X., Anderson, C., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites-a review. Journal of Hazardous Materials, 221–222
  55. Yu, X. Z. (2015). Uptake, assimilation and toxicity of cyanogenic compounds in plants: facts and fiction. International Journal of Environmental Science and Technology, 12(2), 763–774. https://doi.org/10.1007/s13762-014-0571-6
  56. Yu, Xiao Zhang, Li, F., & Li, K. (2011). A possible new mechanism involved in ferro-cyanide metabolism by plants. Environmental Science and Pollution Research, 18(8), 1343–1350. https://doi.org/10.1007/s11356-011-0489-1
  57. Yulianti, I. M. (2021). Potensi Calotropis gigantea dalam Fitoremediasi Logam Berat Timbal (Pb). Biota: Jurnal Ilmiah Ilmu-Ilmu Hayati, 120–128
  58. Zulfikah, Basir, M., & Isrun. (2014). Konsentrasi Merkuri (Hg) dalam Tanah dan Jaringan tanaman Kangkung (Ipomoea reptans) Yang Diberikan Bokashi Kirinyu (Chromolaena odorata L.) pada Limbah Tailing Penambangan Emas Paboya Kota Palu. E-J.Agrotekbis, 2(6), 587–595

Last update:

No citation recorded.

Last update: 2025-01-19 13:48:42

No citation recorded.