skip to main content

Efisiensi Penghilangan Polutan Air Limbah dari Kegiatan Pewarnaan di Industri Tekstil Studi Kasus PT ABC

1Sekolah Pascasarjana, Ilmu Pengelolaan Sumberdaya Alam dan Lingkungan, IPB University, Sekretariat PS-PSL Gedung Sekolah Pascasarjana Lantai II Kampus IPB Baranangsiang Bogor, Indonesia 16144, Indonesia

2Fakultas Perikanan dan Ilmu Kelautan, IPB University, Bogor, Indonesia, Indonesia

3Departemen Ilmu Tanah dan Sumberdaya Lahan, IPB University, Bogor, Indonesia, Indonesia

Received: 11 Feb 2024; Revised: 11 Jun 2024; Accepted: 9 Jul 2024; Available online: 11 Nov 2024; Published: 11 Nov 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract

PT ABC tergolong pada sektor tekstil dan produk tekstil (TPT) khususnya pada kelompok produk tekstil lainya yang memproduksi produk ritsleting dan komponennya. PT ABC telah memproduksi ±153 juta meter produk ritsleting pada tahun 2022, dengan menggunakan ± 250 jenis bahan kimia dan rata-rata 500 L air bersih per harinya dalam proses memproduksi barang jadi. Proses utama PT ABC adalah pewarnaan, dengan air limbah yang dihasilkan memiliki karakteristik warna yang kuat, alkalinitas, konsentrasi COD, BOD, TDS dan TSS yang tinggi serta warna yang kuat. PT ABC saat ini berhadapan dengan persoalan lingkungan yang mendorong diterapkannya ekonomi sirkular melalui konsep sustainable textile and fashion dengan sistem pengolahan air limbah yang berkelanjutan. Salah satu upaya yang dilakukan agar proses pengolahan air limbah dapat berkelanjutan adalah dengan memastikan air limbah yang dibuang ke badan air penerima sudah sesuai baku mutu yang dipersyaratkan, sehingga perlu adanya evaluasi terhadap kinerja sistem pengolahan air limbah di PT ABC . Penelitian ini bertujuan untuk menganalisis nilai penyisihan polutan pada air limbah, sehingga dapat digunakan sebagai evaluasi kinerja Instalasi Pengolahan Air Limbah dan hasil analisis digunakan sebagai salah satu acuan dalam menilai kesiapan PT ABC dalam mencapai target jangka panjang aspek keberlanjutan lingkungan. Hasil analisis menunjukkan bahwa tingkat penyisihan polutan parameter TDS tergolong tidak efektif, parameter fenol, TSS dan ammonia tergolong kurang efektif, parameter MBAS tegolong cukup efektif serta parameter BOD dan COD tergolong efektif. Parameter TDS tergolong pada kategori tidak efektif salah satu faktornya karena PT ABC belum mengimplementasikan metode khusus yang dianggap efektif untuk menurunkan konsentrasi TDS.

Note: This article has supplementary file(s).

Fulltext View|Download |  Data Set
Cover Letter & Laboratory Report for Journal
Subject Textile Industry, Dyeing Process, Wastewater, Sustainable Textile and Fashion, Removal Pollutant
Type Data Set
  Download (8MB)    Indexing metadata
Keywords: Industri Tekstil; Proses Pewarnaan; Air Limbah; Kegiatan Tekstil yang Berkelanjutan; Penyisihan Polutan

Article Metrics:

  1. All references can be accessed in : https://drive.google.com/drive/folders/1XUCA67UktpCN8_-1-ObxvapdZ1qKD2Wa?usp=sharing
  2. Abbas M.N., Al-Madhhachi A.T. & Esmael S. 2019. Quantifying Soil Erodibility Parameters Due To Wastewater Chemicals. International Journal of Hydrology Science and Technology 9 (5): 550– 568. https://doi.org/10.1504/IJHST.2019.10016884
  3. Asian Development Bank. 2016. Indonesia Country Water Assessment Report
  4. Asgher M. & Bhatti N. 2012. Evaluation of Thermodynamics and Effect of Chemical Treatments on Sorption Potential of Citrus Waste Biomass for Removal of Anionic Dyes from Aqueous Solutions. Ecological Engineering Journal, 38: 79– 85
  5. Chandanshive V.V., Niraj R.R., Gholave A.R., Patil S.M., HunJeon B. & Govindwar S.P. 2016. Efficient Decolorization and Detoxification of Textile Industry Effluent by Salvinia Molesta in Lagoon Treatment. Environmental Research (150): 88–96. http://dx.doi.org/10.1016/j.envres.2016.05.047
  6. Fitriana L. & Weliyadi E. 2016. Uji Efektifitas Pengolahan Air Limbah Rumah Sakit Pertamedika Menggunakan Sistem Biofilter Aerob-Anaerob. Jurnal Harpodon Borneo, (9) 2. ISSN 2087-121X
  7. Haque I. & Guha AK. 2009. Characterization of Textile Wastewater of Different Areas of Bangladesh. Bangladesh Textile Today, 3: 28-31
  8. Horrocks AR, Anand S. 2016. Handbook of Technical (Second Edition).Cambridge. Woodhead Publishing
  9. Holkar Jadhav, A. J., Pinjari, D. V., Mahamuni, N. M., & Pandit, A. B. (2016). A Critical Review on Textile Wastewater Treatments: Possible Approaches. Journal of Environmental Management 182: 351–366. doi: 10.1016/j.jenvman.2016.07.090
  10. Huang J, Wang X, Jin Q & Wang Y. 2007. Removal of Phenol from Aqueous Solution by Adsorption Onto Otmac-Modified Attapulgite. Journal of Environmental Management 84 (2): 229–236. http://dx.doi.org/10.1016/j.jenvman.2006.05.007
  11. International Labor Organization. 2021. Greener Clothes? Environmental Initiatives and Tools in the Garment Sector in Asia - Asia Pacific Report
  12. Islam M.I., Mostafa M.G. 2020. Characterization of Textile Dyeing Effluent and Its Treatment Using Polyaluminum Chloride. Applied Water Science (10): 119. https://doi.org/10.1007/s13201-020-01204-4
  13. Kementerian Koordinator Bidang Perekonomian. 2023. Siaran Pers No. HM.4.6/113/SET.M.EKON.3/03/2023 tentang Upaya Dorong Integrasi Supply Chain pada Industri Tekstil dan Produk Tekstil (TPT) dan Alas Kaki
  14. Kutlu, Solmaz Seval. 2005. Color and COD Removal from Textile Effluent by Coagulation and Advanced Oxidation Processes. Society of Dyers and Colorist Journal (122): 102–109. doi: 10.1111/J.1478-4408.2006.00016.X
  15. Mani S., Chowdhary P. & Bharagava R. 2018. Textile Wastewater Dyes: Toxicity Profile and Treatment Approaches. Emerging and Eco-Friendly Approaches for Waste Management. https://doi.org/10.1007/978-981-10-8669-4_11
  16. Milne I., Seager J., Mallett M., Sims I. 2000. Effects of Short-Term Pulsed Ammonia Exposure on Fish. Environmental Toxicology and Chemistry, 19(12): 2929-2936
  17. Mohd A. 2020. Presence of Phenol in Wastewater Effluent and Its Removal: An Overview. International Journal of Environmental Analytical Chemistry. DOI: 10.1080/03067319.2020.1738412
  18. Neeta P. Mohabansi, P.V. Tekade and S.V. Bawankar. 2011. Physico-Chemical and Microbiological Analysis of Textile Industry Effluent of Wardha Region. Water Research and Development, (1) 1: 40-44
  19. Ogunlaja O.O., Aemere O. 2009. Evaluating The Efficiency of A Textile Wastewater Treatment Plant Located in Oshodi, Lagos. African Journal of Pure and Applied Chemistry, 3: 189-196
  20. Paul S.A., Chavan S.K. & Khambe S.D. 2012. Studies on Characterization of Textile Industrial Wastewater in Solapur City. International Journal of Chemical Science 10(2) 635-642. ISSN 0972-768X
  21. J. Bullón Pérez, A. González Arrieta A. Hernández Encinas, and A. Queiruga-Diosc. 2017. Manufacturing Processes In The Textile Industry: Expert Systems for fabrics production. Advances in Distributed Computing and Articial Intelligence Journal 6(4):17-23 DOI: http://dx.doi.org/10.14201/ADCAIJ2017641723
  22. Palmer M. & Hatley H. 2018. The Role of Surfactants in Wastewater Treatment: Impact, Removal and Future Techniques: A Critical Review. Water Research. DOI: 10.1016/J.Watres.2018.09.039
  23. Pei G.F. & Zhang Y.L. 2016. Comparative Analysis of Dyeing Wastewater Treatment Technology. International Conference on Civil, Transportation and Environment (ICCTE 2016). Atlantis Press
  24. Peraturan Menteri Lingkungan Hidup No. 5 Tahun 2014 tentang Baku Mutu Air Limbah Industri
  25. Prasanthrajan M. 2019. Reducing the Total Dissolved Solids in Textile Effluent: An Integrated Approach. International Journal of Chemical Studies, 7(6): 2433-2435
  26. Rahmat B. & Mallongi A. 2018. Studi Karakteristik dan Kualitas BOD dan COD Limbah Cair Rumah Sakit Umum Daerah Lanto Dg. Pasewang Kabupaten Jeneponto. Jurnal Nasional Ilmu Kesehatan (JNIK), Vol. 1. ISSN: 2621-6507
  27. Shanahan J.W. & Semmens M. 2015. Alkalinity and pH Effects on Nitrification in a Membrane Aerated Bioreactor: An Experimental and Model Analysis. Water Research, 74: 10-22
  28. Smol M. 2023. Circular Economy in Wastewater Treatment Plant - Water, Energy and Raw Materials Recovery. Energies (16): 3911. doi: Org/10.3390/En16093911
  29. Sperling M.V. & Chernicharo C.A. De Lemos. 2005. Biological Wastewater Treatment in Warm Climate Regions. London. IWA Publishing. ISBN: 1 84339 0027
  30. Sperling M.V., Verbyla M.A. & Oliveira S. 2020. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners. doi: 10.2166/9781780409320_0181
  31. Sun Y., Zhou S., Chiang P. & Shah K. 2019. Evaluation and Optimization of Enhanced Coagulation Process. Water and Energy Nexus, (2): 25–36
  32. Takeda F., Komori K., Minamiyama M. & Okamoto S. 2016. Toxicity of Wastewater With Regard To Ammonia Evaluated By Algal Growth Inhibition Test: A Case Study Using Wastewater Treatment Pilot Plant. Japanese Journal of Water Treatment Biology, 52 (4): 93-104
  33. Tam Le T.M., Truong T.N., Nguyen P.D., Thanh Le Q.D., Tran Q.V., Nguyen Q.H. & Strady E. 2023. Evaluation of Microplastic Removal Efficiency of Wastewater-Treatment Plants in a Developing Country. Environmental Technology & Innovation, 29: 102994
  34. Tortadja, Cecilla. 2020. Contributions of Recycled Wastewater to Clean Water and Sanitation Sustainable Development Goals. Clean Water (3): 22. https://doi.org/10.1038/s41545-020-0069-3
  35. Vasudevan N., Aaron P.S. & Greeshma O. 2012. Performance Evaluation of A Common Effluent Treatment Plant For Tannery Industries. Journal of Ecobiotechnology, 4(1): 25-28. ISSN: 2077-0464
  36. Verma A.K., Dash R.R., Bhunia P. 2012. A Review on Chemical Coagulation/Flocculation Technologies for Removal of Colour from Textile Wastewaters. Journal of Environmental Management, 93: 154e168
  37. Villarin MC, Merel S. 2020. Paradigm Shifts and Current Challenges in Wastewater Management. Journal of Hazardous Materials (390): 122139. https://doi.org/10.1016/j.jhazmat.2020.122139
  38. Wahid N.B., Razak H.A., Isa I.I., Latif M.T. 2021. Methylene Blue Active Substances (MBAS) and Linear Alkylbenzene Sulphonates (LAS) In Urban and Suburban Atmospheric Aerosol. Environment and Ecology Research 9(4): 159-165. DOI: 10.13189/Eer.2021.090403
  39. Yaseen DA, Scholz M. 2016. Shallow Pond Systems Planted with Lemna Minor Treating Azo Dyes. Ecological Engineering (94): 295–305. http://dx.doi.org/10.1016/j.ecoleng.2016.05.081
  40. Yaseen D.A. & Scholz M. 2018. Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review. International Journal of Environmental Science and Technology (16): 1193–1226. https://doi.org/10.1007/s13762-018-2130-z
  41. Yin F. F. & Gui H.F. Influence of Additional Methanol on Both Pre and Post Denitrification Processes in Treating Municipal Wastewater. Water Science & Technology 85 (5): 1434. doi: 10.2166/wst.2022.06

Last update:

No citation recorded.

Last update: 2025-01-21 15:49:02

No citation recorded.