skip to main content

Pengaruh Kecepatan Rotasi Unit Modifikasi Rotating Biological Contactor terhadap Kinerja Pengolahan Limbah Cair Kelapa Sawit

1Departemen Teknik Sipil dan Lingkungan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Indonesia, Indonesia

2Program Studi Teknik Lingkungan, Fakultas Arsitektur Lanskap dan Teknologi Lingkungan, Universitas Trisakti, Indonesia, Indonesia

Received: 29 Feb 2024; Revised: 11 May 2024; Accepted: 10 Jul 2024; Available online: 21 Jan 2025; Published: 27 Jan 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Limbah cair kelapa sawit (LCKS) mengandung bahan organik dan padatan tersuspensi yang tinggi sehingga berbahaya jika dibuang ke lingkungan tanpa melalui proses pengolahan. Beberapa modifikasi unit pengolahan biologis terus dikembangkan untuk mengolah LCKS, antara lain unit rotating biological contactor (RBC). Penelitian bertujuan untuk mengidentifikasi pengaruh variasi kecepatan rotasi dan penggunaan bioball terhadap kinerja unit modifikasi RBC. Penelitian ini dilakukan dengan menggunakan unit RBC berskala laboratorium dengan variasi kecepatan rotasi sebesar 3, 5, dan 8 rpm. Hasil penelitian menunjukkan bahwa kecepatan rotasi secara signifikan memengaruhi kinerja sistem RBC. Penurunan kecepatan rotasi dari 8 rpm menjadi 3 rpm meningkatkan efisiensi penyisihan soluble chemical oxygen demand (SCOD) secara signifikan dari 62% menjadi 67,4% dan efisiensi total suspended solid (TSS) dari 66% menjadi 92,4%. Kecepatan rotasi rendah pada kandungan organik dan padatan tersuspensi yang tinggi akan memungkinkan lebih banyak waktu kontak antara LCKS dan mikroorganisme sehingga proses transfer oksigen menjadi lebih optimal untuk proses biodegradasi substrat. Walaupun efisiensi SCOD dan TSS mengalami peningkatan yang signifikan, nilai konsentrasi kedua parameter belum memenuhi baku mutu. Oleh karena itu, unit modifikasi RBC perlu diintegrasikan dengan unit pra-pengolahan seperti koagulasi-flokulasi atau media pertumbuhan attached growth tipe lain, seperti honeycomb untuk menghasilkan nilai konsentrasi efluen yang lebih optimum.

Fulltext View|Download
Keywords: bioball; kecepatan rotasi; limbah cair kelapa sawit; rotating biological contactor; transfer oksigen

Article Metrics:

  1. Ahmed, Y., Yaakob, Z., Akhtar, P., & Sopian, K. (2015). Production of biogas and performance evaluation of existing treatment processes in palm oil mill effluent (POME). In Renewable and Sustainable Energy Reviews (Vol. 42, pp. 1260–1278). https://doi.org/10.1016/j.rser.2014.10.073
  2. Bicelli, L. G., Giordani, A., Augusto, M. R., Okada, D. Y., Moura, R. B. de, Vich, D. V., Contrera, R. C., Cano, V., & Souza, T. S. O. de. (2023). Microbial interactions and nitrogen removal performance in an intermittently rotating biological contactor treating mature landfill leachate. Bioresource Technology, 389, 129797. https://doi.org/10.1016/j.biortech.2023.129797
  3. Boehrer, B., von Rohden, C., & Schultze, M. (2017). Physical Features of Meromictic Lakes: Stratification and Circulation (pp. 15–34). https://doi.org/10.1007/978-3-319-49143-1_2
  4. Chaali, M., Naghdi, M., Brar, S. K., & Avalos-Ramirez, A. (2018). A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. In Journal of Chemical Technology and Biotechnology (Vol. 93, Issue 11, pp. 3113–3124). https://doi.org/10.1002/jctb.5692
  5. Chin, M. J., Poh, P. E., Tey, B. T., Chan, E. S., & Chin, K. L. (2013). Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia’s perspective. In Renewable and Sustainable Energy Reviews (Vol. 26, pp. 717–726). https://doi.org/10.1016/j.rser.2013.06.008
  6. Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2013). Encyclopedia of Industrial Biotechnology. John Wiley & Sons Inc
  7. del Álamo, A. C., Pariente, M. I., Molina, R., & Martínez, F. (2022). Advanced bio-oxidation of fungal mixed cultures immobilized on rotating biological contactors for the removal of pharmaceutical micropollutants in a real hospital wastewater. Journal of Hazardous Materials, 425, 128002. https://doi.org/10.1016/j.jhazmat.2021.128002
  8. Fulazzaky, M. A., Salim, N. A. A., Puteh, M. H., Khamidun, M. H., Yusoff, A. R. M., Fulazzaky, M., Abdullah, N. H., & Zaini, M. A. A. (2022). Reliability of the Mass Transfer Factor Models to Describe the Adsorption of NH4+ by Granular Activated Carbon. International Journal of Environmental Research, 16(3). https://doi.org/10.1007/s41742-022-00408-7
  9. García-Jiménez, B., Torres-Bacete, J., & Nogales, J. (2021). Metabolic modelling approaches for describing and engineering microbial communities. In Computational and Structural Biotechnology Journal (Vol. 19, pp. 226–246). https://doi.org/10.1016/j.csbj.2020.12.003
  10. Guadalima, M. P. G., & Monteros, D. A. N. (2018). Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor. Journal of Water Process Engineering, 23, 84–90. https://doi.org/10.1016/j.jwpe.2018.03.008
  11. Irfan, M., Waqas, S., Khan, J. A., Rahman, S., Kruszelnicka, I., Ginter-Kramarczyk, D., Legutko, S., Ochowiak, M., Włodarczak, S., & Czernek, K. (2022). Effect of Operating Parameters and Energy Expenditure on the Biological Performance of Rotating Biological Contactor for Wastewater Treatment. Energies, 15(10), 3523. https://doi.org/10.3390/en15103523
  12. Israni, S. H., Koli, S. S., Patwardhan, A. W., Melo, J. S., & D’Souza, S. F. (2002). Phenol degradation in rotating biological contactors. Journal of Chemical Technology and Biotechnology, 77(9), 1050–1057. https://doi.org/10.1002/jctb.677
  13. Khondabi, V. G., Fazlali, A. R., & Arjomandzadegan, M. (2019). Biological treatment of phenol from petroleum refinery wastewater using mixed indigenous cultures in a rotating biological contactor: Experimental and statistical studies. Desalination and Water Treatment, 160, 135–143. https://doi.org/10.5004/dwt.2019.24263
  14. Krishnan, S., Md Din, M. F., Taib, S. M., Nasrullah, M., Sakinah, M., Wahid, Z. A., Kamyab, H., Chelliapan, S., Rezania, S., & Singh, L. (2019). Accelerated two-stage bioprocess for hydrogen and methane production from palm oil mill effluent using continuous stirred tank reactor and microbial electrolysis cell. Journal of Cleaner Production, 229, 84–93. https://doi.org/10.1016/j.jclepro.2019.04.365
  15. Loupasaki, E., & Diamadopoulos, E. (2013). Attached growth systems for wastewater treatment in small and rural communities: A review. In Journal of Chemical Technology and Biotechnology (Vol. 88, Issue 2, pp. 190–204). https://doi.org/10.1002/jctb.3967
  16. Márquez, P., Gutiérrez, M. C., Toledo, M., Alhama, J., Michán, C., & Martín, M. A. (2022). Activated sludge process versus rotating biological contactors in WWTPs: Evaluating the influence of operation and sludge bacterial content on their odor impact. Process Safety and Environmental Protection, 160, 775–785. https://doi.org/10.1016/j.psep.2022.02.071
  17. Mazareli, R. C. da S., Villa Montoya, A. C., Delforno, T. P., Centurion, V. B., de Oliveira, V. M., Silva, E. L., & Varesche, M. B. A. (2021). Enzymatic routes to hydrogen and organic acids production from banana waste fermentation by autochthonous bacteria: Optimization of pH and temperature. International Journal of Hydrogen Energy, 46(12), 8454–8468. https://doi.org/10.1016/j.ijhydene.2020.12.063
  18. Mohamed, M. A., Fouad, H. A., & Hefny, R. M. (2022). Rotating Biological Contactor Wastewater Treatment Using Geotextiles, Sugarcane Straw and Steel Cylinder for Green Areas Irrigation. Egyptian Journal of Chemistry, 65(6), 59–72. https://doi.org/10.21608/EJCHEM.2021.82581.4065
  19. Mohameda, M. A., Fouad, H. A., & ElHefny, R. E. (2022). Reviewing Rotating Biological Contactor’s Different Aspects for Wastewater Treatment with Experiment. Engineering Research Journal - Faculty of Engineering (Shoubra), 51(2), 180–187. https://doi.org/10.21608/erjsh.2022.239936
  20. Rahardjo, P. N. (2009). Studi banding teknologi pengolahan limbah cair pabrik kelapa sawit. Jurnal Teknologi Lingkungan, 10(1), 9–18. https://doi.org/10.29122/jtl.v10i1.1498
  21. Rahmadi, R., & Kurniawan, A. (2023). Efek Variasi Kecepatan Rotasi Modifikasi Rotating Biological Contactor Terhadap Model Pengolahan Limbah Cair Kelapa Sawit. Institut Pertanian Bogor
  22. Ramsay, J., Shin, M., Wong, S., & Goode, C. (2006). Amaranth decoloration by Trametes versicolor in a rotating biological contacting reactor. Journal of Industrial Microbiology and Biotechnology, 33(9), 791–795. https://doi.org/10.1007/s10295-006-0117-0
  23. Said, N. I. (2017). Teknologi Pengolahan Air Limbah: Teori dan Aplikasi. Erlangga
  24. Septriani, S., Prayogo, N. A., Sahri, A., & Brown, C. L. (2021). Efficiency of suspended solid removal from tofu production using Rotating Biological Contractor (RBC). E3S Web of Conferences, 322, 01034. https://doi.org/10.1051/e3sconf/202132201034
  25. Sfetsas, T., Patsatzis, S., & Chioti, A. (2021). A review of 3D printing techniques for bio-carrier fabrication. In Journal of Cleaner Production (Vol. 318). https://doi.org/10.1016/j.jclepro.2021.128469
  26. Shahot, K., Idris, A., Omar, R., & Yusoff, H. M. (2014). Review on biofilm processes for wastewater treatment. Life Science Journal, 11(11), 1–13
  27. Sivadon, P., Barnier, C., Urios, L., & Grimaud, R. (2019). Biofilm formation as a microbial strategy to assimilate particulate substrates. In Environmental Microbiology Reports (Vol. 11, Issue 6, pp. 749–764). https://doi.org/10.1111/1758-2229.12785
  28. Soo, P. L., Bashir, M. J. K., & Wong, L. P. (2022). Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: Challenges and future perspectives. In Journal of Environmental Management (Vol. 320, p. 115750). https://doi.org/10.1016/j.jenvman.2022.115750
  29. Spasov, E., Tsuji, J. M., Hug, L. A., Doxey, A. C., Sauder, L. A., Parker, W. J., & Neufeld, J. D. (2020). High functional diversity among Nitrospira populations that dominate rotating biological contactor microbial communities in a municipal wastewater treatment plant. ISME Journal, 14(7), 1857–1872. https://doi.org/10.1038/s41396-020-0650-2
  30. Wang, D., Wang, Y., Liu, L., Chen, Y., Wang, C., Xu, X., Yang, Y., Wang, Y., & Zhang, T. (2022). Niche differentiation and symbiotic association among ammonia/nitrite oxidizers in a full-scale rotating biological contactor. Water Research, 225, 119137. https://doi.org/10.1016/j.watres.2022.119137
  31. Waqas, S., & Bilad, M. R. (2019). A review on rotating biological contactors. Indonesian Journal of Science and Technology, 4(2), 241–256. https://doi.org/10.17509/ijost.v4i2.18181
  32. Waqas, S., Harun, N. Y., Sambudi, N. S., Bilad, M. R., Abioye, K. J., Ali, A., & Abdulrahman, A. (2023). A Review of Rotating Biological Contactors for Wastewater Treatment. In Water (Switzerland) (Vol. 15, Issue 10, p. 1913). https://doi.org/10.3390/w15101913
  33. Xiao, R., Wei, Y., An, D., Li, D., Ta, X., Wu, Y., & Ren, Q. (2019). A review on the research status and development trend of equipment in water treatment processes of recirculating aquaculture systems. In Reviews in Aquaculture (Vol. 11, Issue 3, pp. 863–895). https://doi.org/10.1111/raq.12270
  34. Xiong, Y., & Liu, Y. (2010). Biological control of microbial attachment: A promising alternative for mitigating membrane biofouling. In Applied Microbiology and Biotechnology (Vol. 86, Issue 3, pp. 825–837). https://doi.org/10.1007/s00253-010-2463-0
  35. Yulastri, Hazmi, A., & Desmiarti, R. (2013). Aplikasi Plasma Dengan Metoda Dielectric Barrier Discharge (DBD) Untuk 295 Pengolahan Limbah Cair Kelapa Sawit. Jurnal Nasional Teknik Elektro, 2(2), 46. https://doi.org/10.25077/jnte.v2n2.85.2013
  36. Zhang, J. hong, Lin, Q. mei, & Zhao, X. rong. (2014). The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. Journal of Integrative Agriculture, 13(3), 471–482. https://doi.org/10.1016/S2095-3119(13)60702-9

Last update:

No citation recorded.

Last update: 2025-01-30 01:51:09

No citation recorded.