skip to main content

Detection of Factors Affecting Rainfall Intensity in Jakarta

1Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Indonesia, Indonesia

2System Dynamics Centre, IPB University, Bogor, Indonesia, Indonesia

3School of Mathematical and Physical Sciences, University of Technology Sydney, Australia, Australia

Received: 12 May 2024; Revised: 9 Oct 2024; Accepted: 8 Jan 2024; Available online: 21 Jan 2025; Published: 27 Jan 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract
The increased intensity of rainfall is becoming one of the most pressing climate-related issues in many parts of the world. Detecting the factors that affect rainfall intensity requires a combination of modern technologies, such as weather satellites, radar systems, and advanced atmospheric models. Extreme conditions (outliers) often occur. This study aims to model data that is not symmetric or contains outliers. This study examines and models quantile regression on daily rainfall intensity in Jakarta which has extreme rainfall events. The results of the study found that the extreme values in the daily rainfall intensity data in Jakarta are outliers and the assumptions on modeling using linear regression are not satisfied so that the characteristics of the parameter estimator based on OLS do not have BLUE characteristic. In modeling with quantile regression using six quantiles 0.25, 0.50, 0.75, 0.95, 0.99, and 0.9999 with consideration of these quantile values representing all parts of the data distribution including extreme values, it was found that the factors affecting rainfall intensity in Jakarta are different in each rainfall intensity condition. The best model is shown by quantile 0.999 with a coefficient of determination of 58.21%. Based on the best model, it is known that the factors affecting extreme rainfall are maximum temperature, dew point temperature, air humidity, wind speed, air pressure, and length of irradiation. This study indicates that quantile regression can provide a more detailed insight into how these variables affect rainfall intensity in various rainfall conditions ranging from low rainfall to extreme rainfall.
Fulltext View|Download
Keywords: Ordinary Least Square; Outliers; Quantile; Quantile Regression; Rainfall; Robust

Article Metrics:

  1. BMKG. BMKG: Fenomena La Nina Triple Dip Jadi Ancaman Negara-negara di Dunia. Diakses pada 20 Oktober 2023 dari https://www.bmkg.go.id/berita/?p=bmkg-fenomena-la-nina-triple-dip-jadi-ancaman-negara-negara-di-dunia〈=ID&tag=press-release
  2. Davino, C., Furno, M., & Vistocco, D. 2014. Quantile Regression: Theory and Applications. United Kingdom: John Wiley & Sons
  3. Gujarati, D. N., & Porter, D. 2009. Basic Econometrics (Fifth Edition). New York: Mc Graw-Hill
  4. Gunadi, A. 2022. Klasifikasi Curah Hujan Harian Menggunakan Learning Vector Quantization. Jurnal Ilmu Komputer Indonesia, 7(2), 1-7
  5. Koenker, R. 2005. Quantile Regression. New York: Cambridge University Press
  6. Koenker, R., & Hallock, K. F. 2001. Quantile Regression. Journal of Economic Perspectives, 15(4), 143-156
  7. Koenker, R., & Machado, J. A. 1999. Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296-1310
  8. Lenderink, G., Mok, H. Y., Lee, T. C., & Van Oldenborgh, G. J. 2011. Scaling and Trends of Hourly Precipitation Extremes in Two Different Climate Zones–Hong Kong and the Netherlands. Hydrology and Earth System Sciences, 15(9), 3033-3041
  9. Manly, Bryan F.J, 2000. Statistika Untuk Ilmu dan Manajemen Lingkungan. Sumargo, Bagus. 2021. Pustaka Pelajar: Yogyakarta
  10. Mckay, C. 2019. Probability and Statistics. United Kingdom: ED-Tech Press
  11. Mondiana, Y. Q. 2021. Prediksi Curah Hujan Ekstrim Untuk Mitigasi Bencana Banjir. Jurnal Geografi, 10(1), 31-39
  12. Montgomery, D. C., Peck, E. A., & Vining, G. G. 2012. Introduction to Linear Regression Analysis (Fifth Edition). Hoboken, New Jersey: John Wiley & Sons, Inc
  13. Nugroho, Agung. 2022. Banyak Faktor Pengaruhi Tingginya Curah Hujan. Diakses pada 14 Juni 2023 dari https://ugm.ac.id/id/berita/22459-pengamat-ugm-banyak-faktor-pengaruhi-tingginya-curah-hujan/
  14. Ogimet. Form To Get Daily Summaries From Synop Reports. Diakses pada 1 Maret 2023 dari https://www.ogimet.com/gsynres.phtml.en
  15. Pumo, D., & Noto, L. V. 2021. Exploring the Linkage between Dew Point Temperature and Precipitation Extremes: A Multi-Time-Scale Analysis on A Semi-Arid Mediterranean Region. Atmospheric Research, 254, 1-16
  16. Pumo, D., Carlino, G., Blenkinsop, S., Arnone, E., Fowler, H., & Noto, L. V. 2019. Sensitivity of Extreme Rainfall to Temperature in Semi-Arid Mediterranean Regions. Atmospheric Research, 225, 30-44
  17. Soejoeti, Zanzawi. 1986. Buku Materi Pokok Metode Statistika II. Jakarta: Karunika Jakarta
  18. Wilson, E. M. 1993. Hidrologi Teknik edisi keempat. Bandung: ITB

Last update:

No citation recorded.

Last update: 2025-01-29 22:08:58

No citation recorded.