skip to main content

Prediksi Spasial Deforestasi Kawasan Hutan Taman Nasional Bogani Nani Wartabone Menggunakan Cellular Automata-Artificial Neural Network

1Program Studi Pendidikan Geografi, Universitas Negeri Gorontalo, Gorontalo, Indonesia, Indonesia

2Program Studi Ilmu Lingkungan, Universitas Negeri Gorontalo, Gorontalo, Indonesia, Indonesia

Received: 4 Jun 2024; Revised: 11 Sep 2024; Accepted: 9 Jan 2025; Available online: 15 Mar 2025; Published: 31 Mar 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Deforestasi adalah konversi permanen area berhutan menjadi area tidak berhutan akibat aktivitas manusia. Penelitian ini mengkaji perubahan tutupan hutan antara tahun 2002, 2012, dan 2022, serta memperkirakan tutupan hutan dan tingkat deforestasi pada tahun 2032. Data yang digunakan adalah data perubahan hutan global Hansen dengan resolusi 30 meter, yang mencakup data Tutupan Pohon dan data Tahun Kehilangan. Proyeksi ini menggunakan metode Cellular Automata-Artificial Neural Network (CA-ANN) dengan mempertimbangkan kemiringan lereng, ketinggian, NDVI, dan jarak dari jalan sebagai faktor-faktor pendorong. Deforestasi ditentukan dengan mengurangkan area berhutan tahun awal dengan area berhutan tahun akhir. Selama periode 2002-2012, deforestasi mencapai 3.514,53 hektar (0,12% per tahun) dan selama periode 2012-2022 sebesar 3.064,61 hektar (0,11% per tahun). Total deforestasi selama 20 tahun mencapai 6.579,14 hektar dengan laju 0,12% per tahun. Diperkirakan deforestasi pada periode 2022-2032 akan mencapai 948,43 hektar (0,03% per tahun). Temuan ini diharapkan dapat membantu pengelolaan Taman Nasional Bogani Nani Warbone dalam mengembangkan kebijakan pencegahan deforestasi.

Fulltext View|Download
Keywords: Deforestasi; TNBNW; Global Forest Change; Tutupan Hutan; Cellular Automata
Funding: Wildlife Conservation Society

Article Metrics:

  1. Aksoy, H., & Kaptan, S. (2022). Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model. Geocarto International, 37(4), 1183–1202. https://doi.org/10.1080/10106049.2020.1778102
  2. Baig, M. F., Mustafa, M. R. U., Baig, I., Takaijudin, H. B., & Zeshan, M. T. (2022). Assessment of Land Use Land Cover Changes and Future. Water, 1–17. https://doi.org/ 10.3390/w14030402
  3. Bashari, H., Rahmanita, D., Lela, M. W., Datunsolang, I., Mokodompit, A., & Mokoginta, R. P. (2020). Status Keragaman Jenis Satwa dan Tumbuhan di Kawasan Taman Nasional Bogani Nani Wartabone Sulawesi Utara - Gorontalo, 2020. Balai Taman Nasional Bogani Nani Wartabone dan Enhancing the Protected Area System in Sulawesi for Biodiversity Conservation (EPASS) - Project
  4. Dariono, D., Siregar, Y. I., & Nofrizal, N. (2018). Analisis Spasial Deforestasi dan Degradasi Hutan di Suaka Margasatwa Kerumutan Provinsi Riau. Dinamika Lingkungan Indonesia, 5(1), 27. https://doi.org/10.31258/dli.5.1.p.27-33
  5. Darmawan, M. G., & Fardani, I. (2022). Prediksi Deforestasi Hutan Menggunakan Metode Cellular Automata di Kabupaten Bogor. Bandung Conference Series: Urban & Regional Planning, 2(1), 61–70. https://doi.org/10.29313/bcsurp.v2i1.1764
  6. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693
  7. Harold, R., & Ibrahim, R. (2020). Pelestarian Taman Nasional Bogani Nani Wartabone Berbasis Lembaga Sosial Agama. Ideas: Jurnal Pendidikan, Sosial, Dan Budaya, 6(4), 415. https://doi.org/10.32884/ideas.v6i4.296
  8. Hoang, N. T., & Kanemoto, K. (2021). Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nature Ecology and Evolution, 5(6), 845–853. https://doi.org/10.1038/s41559-021-01417-z
  9. Hou, H., Zhou, B. B., Pei, F., Hu, G., Su, Z., Zeng, Y., Zhang, H., Gao, Y., Luo, M., & Li, X. (2022). Future Land Use/Land Cover Change Has Nontrivial and Potentially Dominant Impact on Global Gross Primary Productivity. Earth’s Future, 10(9), 1–20. https://doi.org/10.1029/2021EF002628
  10. Jia, Z., Ma, B., Zhang, J., & Zeng, W. (2018). Simulating spatial-temporal changes of land-use based on ecological redline restrictions and landscape driving factors: A case study in Beijing. Sustainability (Switzerland), 10(4), 1–18. https://doi.org/10.3390/su10041299
  11. Kawuwung, F. R. (2012). Potensi Taman Nasional Bogani Nani Wartabone, Permasalahan Dan Konservasi Pada Tingkat Pengembangan Dan Pengawasan. El–Hayah, 1(2), 15–18. https://doi.org/10.18860/elha.v1i2.1689
  12. Kleemann, J., Baysal, G., Bulley, H. N. N., & Fürst, C. (2017). Assessing driving forces of land use and land cover change by a mixed-method approach in north-eastern Ghana, West Africa. Journal of Environmental Management, 196, 411–442. https://doi.org/10.1016/j.jenvman.2017.01.053
  13. Koranteng, Addo, & Zawila-niedzwiecki, T. (2020). Modelling forest loss and other land use change dynamics in Ashanti Region of Ghana. 57(2), 96–111. https://doi.org/10.1515/ffp-2015-0010
  14. Lukas, P., Melesse, A. M., & Kenea, T. T. (2023). Prediction of Future Land Use/Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia. Remote Sensing, 15(4). https://doi.org/10.3390/rs15041148
  15. Mahapatr, K., & Kant, S. (2005). Tropical deforestation: A multinomial logistic model and some country-specific policy prescriptions. Forest Policy and Economics, 7(1), 1–24. https://doi.org/10.1016/S1389-9341(03)00064-9
  16. Maryam, T. (2021). Environmental & Analytical Toxicology A Review on Deforestation : It ’ s Effects and Ways to reduce it. 11
  17. Nuankaew, P., Nuankaew, W., Teeraputon, D., Phanniphong, K., & Bussaman, S. (2020). Prediction Model of Student Achievement in Business Computer Disciplines Learning Strategies for Lifelong Learning. International Journal of Emerging Technologies in Learning, 15(20), 160–181
  18. Pendrill, F., Persson, U. M., Godar, J., Kastner, T., Moran, D., Schmidt, S., & Wood, R. (2019). Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environmental Change, 56(February), 1–10. https://doi.org/10.1016/j.gloenvcha.2019.03.002
  19. Rienow, A., & Goetzke, R. (2015). Supporting SLEUTH - Enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems, 49, 66–81. https://doi.org/10.1016/j.compenvurbsys.2014.05.001
  20. Rosalina, L., & Susilo, B. (2018). Integrasi Pemodelan Cellular Automata Dan Multilayer Perceptron Untuk Prediksi Lahan. Jurnal Bumi Indonesia, 7(2)
  21. Senoaji, G. (2019). The Conflicts of Ultilization of Forest Area in Bukit Basa Limited Production Forest, Rejang Lebong District, Bengkulu Province. Jurnal Ilmu Lingkungan, 17(1), 61. https://doi.org/10.14710/jil.17.1.61-69
  22. Shen, L., Li, J. B., Wheate, R., Yin, J., & Paul, S. S. (2020). Multi-Layer Perceptron Neural Network and Markov Chain Based Geospatial Analysis of Land Use and Land Cover Change. Journal of Environmental Informatics Letters, 3(1), 28–38. https://doi.org/10.3808/jeil.202000023
  23. Wan Mahari, W. A., Azwar, E., Li, Y., Wang, Y., Peng, W., Ma, N. L., Yang, H., Rinklebe, J., Lam, S. S., & Sonne, C. (2020). Deforestation of rainforests requires active use of UN’s Sustainable Development Goals. Science of the Total Environment, 742. https://doi.org/10.1016/j.scitotenv.2020.140681

Last update:

No citation recorded.

Last update: 2025-04-01 05:07:30

No citation recorded.