skip to main content

Analisis Kerawanan Longsor dengan Metode Analytical Hierarchy Process dan Information Value di Kecamatan Lembang–Kabupaten Bandung Barat

Departemen Geografi Lingkungan, Fakultas Geografi, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia

Received: 13 Aug 2024; Revised: 19 Sep 2025; Accepted: 25 Sep 2025; Available online: 30 Sep 2025; Published: 8 Oct 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Kecamatan Lembang merupakan salah satu daerah yang sering dilanda bencana tanah longsor. Kejadian longsor di daerah tersebut tidak jarang menimbulkan kerugian ekonomi dan korban jiwa. Sejauh ini, belum ada satupun penelitian yang membandingkan metode pemetaan kerawanan tanah longsor, misalnya analytical hierarchy process (AHP) dan information value (IV), di daerah tersebut. Oleh karena itu, penelitian ini bertujuan (1) memetakan dan menganalisis distribusi spasial tingkat kerawanan longsor dan (2) membandingkan serta menganalisis metode AHP dan IV untuk kajian kerawanan longsor di Kecamatan Lembang. Sebanyak delapan parameter kerawanan longsor digunakan dalam pemetaan, seperti ketinggian, kemiringan lereng, arah hadap lereng, jarak terhadap patahan, jarak terhadap sungai, jarak terhadap jalan, litologi, dan penggunaan lahan. Semua parameter tersebut kemudian ditumpangsusunkan (overlay) sehingga menghasilkan peta kerawanan tanah longsor. Hasil peta kerawanan tersebut kemudian dibagi menjadi 5 kelas: sangat rendah, rendah, sedang, tinggi, dan sangat tinggi. Uji akurasi juga dilakukan terhadap kedua metode pemetaan. Metode IV memiliki akurasi yang lebih tinggi daripada metode AHP dengan nilai 68% berbanding 56%. Pola kelas kerawanan tinggi dan sangat tinggi di kedua peta tersebut berasosiasi dengan hutan dan jaringan sungai. Selain itu, analisis ini juga menunjukkan kualitas data parameter dan ketersediaan basis data kejadian penting untuk menghasilkan peta yang lebih representatif.

Fulltext View|Download
Keywords: kerawanan, tanah longsor, analytical hierarchy process, information value, GIS

Article Metrics:

  1. Azikin, B., & Bundang, S. (2022). Kerentanan Bencana Tanah Longsor di Wilayah Kecamatan Herolangelange Kabupaten Bulukumba Sulawesi Selatan. Jurnal GEOMining, 3(2), 67-75
  2. Barančoková, M., Šošovička, M., Barančok Jr, P., & Barančok, P. (2021). Predictive modelling of landslide susceptibility in the Western Carpathian Flysch Zone. Land, 10(12), 1370
  3. Das, S., Sarkar, S., & Kanungo, D. P. (2022). GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Environmental Monitoring and Assessment, 194(4), 234
  4. Chen, C. Y., Willett, S. D., West, A. J., Dadson, S., Hovius, N., Christl, M., & Shyu, J. B. H. (2020). The impact of storm‐triggered landslides on sediment dynamics and catchment‐wide denudation rates in the southern Central Range of Taiwan following the extreme rainfall event of Typhoon Morakot. Earth Surface Processes and Landforms, 45(3), 548-564
  5. El Jazouli, A., Barakat, A. & Khellouk, R. (2019). GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironment Disasters, 6, 3
  6. Gariano, S. L., & Guzetti, F. (2016). Landslides in a changing climate. Earth Science Review, 162, 227-252
  7. Gaidzik, K., & Ramírez-Herrera, M. T. (2021). The importance of input data on landslide susceptibility mapping. Scientific Reports, 11(1), 19334
  8. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181-216
  9. Guzzetti, F., Gariano, S.L., Peruccacci, S., Brunetti, M.T., Marchesini, I., Rossi, M., Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973
  10. Guzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1-2), 42-66
  11. Hadmoko DS, Lavigne F, Sartohadi J, Hadi MP (2010). Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia. Natural Hazards, 54(3), 623–642
  12. Hadmoko DS, Lavigne F, Sartohadi J, Samodra G, Christanto N. (2009). GIS application for comprehensive spatial landslides analysis in Kayangan Catchment, Menoreh Mountains, Java, Indonesia dalam Landslides processes: from geomorphic mapping to dynamic modeling, editor Malet J.P., Remaıˆtre A., Bogaard T. European Center of Geomorphological Hazards, Strasbourg, pp. 297–302
  13. Hadmoko, D. S., Lavigne, F., & Samodra, G. (2017). Application of a semiquantitative and GIS-based statistical model to landslide susceptibility zonation in Kayangan Catchment, Java, Indonesia. Natural Hazards, 87, 437-468
  14. Hussain, E., Gunawan, E., & Hanifa, N. R. (2023). The seismic hazard from the Lembang Fault, Indonesia, derived from InSAR and GNSS data. Natural Hazards and Earth System Sciences, 23, 3185-3197
  15. Istiyanti, M. L., Goto, S., & Ochiai, H. (2021). Characteristics of tuff breccia-andesite in diverse mechanisms of landslides in Oita Prefecture, Kyushu, Japan. Geoenvironmental Disasters, 8, 4
  16. Kastolani, W., Darsiharjo, Setiawan, I., & Rahmafitria, F. (2017). Pelatihan Desa Binaan Siaga Bencana Untuk Pengurangan Resiko Bencana Gempa Bumi Dan Longsor di Desa Suntenjaya Kecamatan Lembang Kabupaten Bandung Barat. Jurnal Abmas Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Pendidikan Indonesia, 17(1), 74-87
  17. Kementerian Energi dan Sumber Daya Mineral. (2022). Laporan Kebencanaan Geologi. Diakses melalui https://vsi.esdm.go.id/index.php/kegiatan-pvmbg/berita-harian-kebencanaan-geologi/3830-laporan-kebencanaan-geologi-15-november-2021
  18. Knapen, A., Kitutu, M. G., Poesen, J., Breugelmans, W., Deckers, J., & Muwanga, A. (2006). Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology, 73(1-2), 149-165
  19. Loche, M., Alvioli, M., Marchesini, I., Bakka, H., Lombardo, L. (2022). Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth Sci. Rev. 232, 104125
  20. Malawani, M. N., Rachmadan, F. A., Rahim, A. P., Hibatullah, M. F., Ningsih, R. L., Yoga, A. G. H., & Handayani, T. (2024). Menentukan Jenis Bencana Prioritas pada Level Kabupaten: Studi Kasus Kabupaten Kulon Progo. Media Komunikasi Geografi, 25(1), 243-256
  21. Naryanto, H. S., Soewandita, H., Ganesha, D., Prawiradisastra, F., & Kristijono, A. (2019). Analisis Penyebab Kejadian dan Evaluasi Bencana Tanah Longsor di Desa Banaran, Kecamatan Pulung, Kabupaten Ponorogo, Provinsi Jawa Timur Tanggal 1 April 2017. Jurnal Ilmu Lingkungan, 17(2), 272-282
  22. Naryanto, H.S. (2013). Analisis dan Evaluasi Kejadian Bencana Tanah Longsor di Cililin, Kabupaten Bandung Barat, Provinsi Jawa Barat Tanggal 25 Maret 2013, Jurnal Sains dan Teknologi Mitigasi Bencana, 8(1), 39-49
  23. Naryanto, H.S., Kristijono, A., Suwandita, H., Ganesha, D., Prawiradisastra, F. dan Udrekh. (2017). Analisis Kejadian Bencana Tanah Longsor (Gerakan Tanah) di Dusun Tangkil, Desa Banaran, Kecamatan Pulung, Kabupaten Ponorogo, Provinsi Jawa Timur Tanggal 1 April 2017. Laporan Kajian Cepat, PTRRB, BPPT
  24. Ohlmacher, G. C. (2007). Plan curvature and landslide probability in regions dominated by earth flows and earth slides. Engineering Geology, 91(2-4), 117-134
  25. Ozdemir, A. (2020). A comparative study of the frequency ratio, analytical hierarchy process, artificial neural networks and fuzzy logic methods for landslide susceptibility mapping: Taşkent (Konya), Turkey. Geotechnical and Geological Engineering, 38, 4129-4157
  26. Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63(2), 965–996
  27. Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037-1054
  28. Ramlah, R., Hadmoko, D. S., & Setiawan, M. A. (2020). Penilaian Tingkat Aktivitas Longsor di Sub-DAS Bompon. Media Komunikasi Geografi, 21(1), 12-26
  29. Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill Book Co, New York
  30. Saha, A. K., Gupta, R. P., & Arora, M. K. (2002). GIS-based landslide hazard zonation in the Bhagirathi (Ganga) valley, Himalayas. International journal of remote sensing, 23(2), 357-369
  31. Samodra, G. (2022). Simulasi Morfodinamika Longsor Kalisari, Kabupaten Magelang Berdasarkan Data LiDAR dan Model Numerik. Jurnal Lingkungan dan Bencana Geologi, 13(2)
  32. Sanjaya, Z. T., Puspitosari, A., & Hidayat, A. (2023). Analysis of Landslide Vulnerability in Conto Village, Bulukerto Subdistrict, Wonogiri Regency. ENVIBILITY: Journal of Environmental and Sustainability Studies, 1(2), 115-122
  33. Sarkar, S., Roy, A. K., & Martha, T. R. (2013). Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. Journal of the Geological Society of India, 82, 351-362
  34. Schicker, R., & Moon, V. (2012). Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161–162, 40–57
  35. Tan, F., Hu, X., He, C., Zhang, Y., Zhang, H., Zhou, C., & Wang, Q. (2018). Identifying the main control factors for different deformation stages of landslide. Geotechnical and Geological Engineering, 36, 469-482
  36. Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3-4), 112–131
  37. Varnes DJ. (1984). Landslide hazard zonation: a review of principles and practice, Commission on landslides of the IAEG, UNESCO, Natural Hazards, 3, 61
  38. Williams, F., McColl, S., Fuller, I., Massey, C., Smith, H., & Neverman, A. (2021). Intersection of fluvial incision and weak geologic structures cause divergence from a universal threshold slope model of landslide occurrence. Geomorphology, 389, 107795
  39. Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6, 139-152
  40. Yulianto, T., Suripin, S., & Purnaweni, H. (2019). Zoning landslide vulnerable area according to geological structure, slopes, and landuse parameters In Trangkil Sukorejo Gunungpati Semarang City’s Residental Area. Journal of Physics: Conference Series, 1217(1), 012029
  41. Zayadi, R., Andayani, S., & Indrawati, E. (2023). Pemanfaatan Tanaman Bambu dan Kaliandra untuk Perkuatan Lereng sebagai Upaya Mitigasi terhadap Longsor di Desa Sinarresmi Sukabumi: Utilization of Bamboo and Kaliandra Plant for Slope Reinforcement as a Mitigation Effort against Availability in Sinarresmi Village, Sukabumi. PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat, 8(4), 514-522

Last update:

No citation recorded.

Last update: 2025-10-09 03:33:49

No citation recorded.