skip to main content

A Review: Application of Bioremediation and Phytoremediation Techniques for Heavy Metal Contamination in Mining Areas of Sulawesi, Indonesia

1Department of Chemistry, Faculty of Mathematics and Natural Science, Hasanuddin University, Makassar, 90245, South Sulawesi, Indonesia, Indonesia

2Department of Chemistry, Faculty of Science and Technology, Islamic State University of Alauddin Makassar, Makassar, 92118, South Sulawesi, Indonesia, Indonesia

3Departement of Environmental Engineering, Sekolah Tinggi Teknologi Nusantara Indonesia, Makassar, 90234, South Sulawesi, Indonesia, Indonesia

4 Department of Pharmacy, School of Pharmacy YAMASI, Makassar 90222, South Sulawesi, Indonesia, Indonesia

View all affiliations
Received: 6 Oct 2024; Revised: 26 Oct 2025; Accepted: 31 Oct 2025; Available online: 8 Nov 2025; Published: 8 Nov 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Mining has been a practice spanning millennia, leaving behind a legacy of mine waste containing hazardous substances, including various metals in nearly every country. Indonesia is one of the most nickel-rich regions in the world. Some of these resources are located in the Sulawesi and North Maluku regions. Sulawesi includes Central Sulawesi, South Sulawesi and Southeast Sulawesi. Pollutants in the form of mercury metal (Hg), lead metal (Pb), cadmium metal (Cd), and chromium metal (Cr) are considered toxic and difficult to remove due to their stable nature. Effective remediation methods are imperative in response to this issue, among which bioremediation and phytoremediation stand out. Bioremediation employs microorganisms to detoxify the environment of heavy metals, while phytoremediation utilizes plants for the same purpose. Both methods involve intricate interactions among plants, microbes, and their substrates to purify the environment and facilitate further filtration. Bioremediation encompasses two primary approaches: the in-situ method and the ex-situ method. In situ methods include bioventing, biosparging, bioaugmentation, and biostimulation. Ex-situ methods, contaminated soil or water is retrieved from its origin and purified elsewhere by living organisms; this process utilizes bioreactors, aeration, steam regulation, and additional nutrients to increase the rate of pollutant decomposition. The bioremediation mechanism involving microorganisms employs biosorption, bioaccumulation, biotransformation, and bioleaching. Phytoremediation employs several methods, including phytoextraction, phytofiltration, phytovolatilization, phytodegradation, and phytodesalination. Identifying efficient hyperaccumulators is the most direct approach for successful heavy metal phytoremediation. Bioremediation and phytoremediation techniques are economical and suitable solutions to address heavy metal pollution in polluted environments. With a deeper understanding of these techniques, it is hoped that we can more effectively address these complex environmental challenges, particularly in mining areas in Sulawesi, Indonesia.

Fulltext View|Download

Article Metrics:

  1. Abo-Alkasem, M. I., Hassan, N. H., & Abo Elsoud, M. M. (2023). Microbial bioremediation as a tool for the removal of heavy metals. Bulletin of the National Research Centre, 47(1). https://doi.org/10.1186/s42269-023-01006-z
  2. Abomohra, A. E. F., El-Hefnawy, M. E., Wang, Q., Huang, J., Li, L., Tang, J., & Mohammed, S. (2021). Sequential bioethanol and biogas production coupled with heavy metal removal using dry seaweeds: Towards enhanced economic feasibility. Journal of Cleaner Production, 316(March). https://doi.org/10.1016/j.jclepro.2021.128341
  3. Adidharma, Mohammad Afdhal, Noverita Dian Takarina, Supriatna, E. dan A. G. P. (2020). Distribution and Contamination of Heavy Metal Nickel ( Ni ) in Sediment. 233–242
  4. Akoto, O., Yakubu, S., Ofori, L. A., Bortey-Sam, N., Boadi, N. O., Horgah, J., & Sackey, L. N. (2023). Multivariate Studies and Heavy Metal Pollution in Soil from Gold Mining Area. Heliyon, 9(1)
  5. Alavi, S. A., Zilouei, H., Zargoosh, K., Asadinezhad, A., & Yousefi Abdolmaleki, A. (2018). Surface modification of Nizimuddinia zanardini and Stoechospermum marginatum using 4-phenyl-3-thiosemicarbazide to improve heavy metals biosorption from water. International Journal of Environmental Science and Technology, 15(5), 993–1000. https://doi.org/10.1007/s13762-017-1441-9
  6. Albert, Q., Leleyter, L., Lemoine, M., Heutte, N., Rioult, J. P., Sage, L., Baraud, F., & Garon, D. (2018). Comparison of tolerance and biosorption of three trace metals (Cd, Cu, Pb) by the soil fungus Absidia cylindrospora. Chemosphere, 196, 386–392. https://doi.org/10.1016/j.chemosphere.2017.12.156
  7. Alcantara, H. J. P., Doronila, A. I., & Kolev, S. D. (2017). Phytoextraction potential of Manihot esculenta Crantz. (cassava) grown in mercury- and gold-containing biosolids and mine tailings. Minerals Engineering, 114(May), 57–63. https://doi.org/10.1016/j.mineng.2017.09.010
  8. Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(Cd). https://doi.org/10.1155/2019/6730305
  9. Alothman, Z. A., Bahkali, A. H., Khiyami, M. A., Alfadul, S. M., Wabaidur, S. M., Alam, M., & Alfarhan, B. Z. (2020). Low cost biosorbents from fungi for heavy metals removal from wastewater. Separation Science and Technology (Philadelphia), 55(10), 1766–1775. https://doi.org/10.1080/01496395.2019.1608242
  10. Alvizuri-Tintaya, P. A., Villena-Martínez, E. M., Avendaño-Acosta, N., Lo-Iacono-Ferreira, V. G., Torregrosa-López, J. I., & Lora-García, J. (2022). Contamination of Water Supply Sources by Heavy Metals: The Price of Development in Bolivia, a Latin American Reality. Water (Switzerland), 14(21). https://doi.org/10.3390/w14213470
  11. Ameen, F. A., Hamdan, A. M., & El-Naggar, M. Y. (2020). Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-019-57210-3
  12. Audu, K. E., Adeniji, S. E., & Obidah, J. S. (2020). Bioremediation of toxic metals in mining site of Zamfara metropolis using resident bacteria (Pantoea agglomerans): A optimization approach. Heliyon, 6(8), e04704. https://doi.org/10.1016/j.heliyon.2020.e04704
  13. Aznur, B. S., Nisa, S. K., & Septriono, W. A. (2022). Agen Biologis Bioremediasi Logam Berat (Heavy Metal Bioremediation Biologycal Agents). Maiyah, 1(4), 186. https://doi.org/10.20884/1.maiyah.2022.1.4.7442
  14. Bai, H., Liu, D., Zheng, W., Ma, L., Yang, S., Cao, J., Lu, X., Wang, H., & Mehta, N. (2021). Microbially-induced calcium carbonate precipitation by a halophilic ureolytic bacterium and its potential for remediation of heavy metal-contaminated saline environments. International Biodeterioration and Biodegradation, 165(June), 105311. https://doi.org/10.1016/j.ibiod.2021.105311
  15. Balaji, S., Kalaivani, T., Shalini, M., Gopalakrishnan, M., Rashith Muhammad, M. A., & Rajasekaran, C. (2016). Sorption sites of microalgae possess metal binding ability towards Cr(VI) from tannery effluents—a kinetic and characterization study. Desalination and Water Treatment, 57(31), 14518–14529. https://doi.org/10.1080/19443994.2015.1064032
  16. Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ullah, S., Sajid, S., & Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222. https://doi.org/10.1016/j.chemosphere.2018.02.043
  17. Bhat, S. A., Bashir, O., Ul Haq, S. A., Amin, T., Rafiq, A., Ali, M., Américo-Pinheiro, J. H. P., & Sher, F. (2022). Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere, 303(January). https://doi.org/10.1016/j.chemosphere.2022.134788
  18. BPS. (2022). Perusahaan Pertambangan Nikel Menurut Kabupaten/Kota. https://sultra.bps.go.id/id/statistics-table/1/NDAzNyMx/perusahaan-pertambangan-nikel-menurut-kabupaten-kota.html
  19. Brown, L. D., Cologgi, D. L., Gee, K. F., & Ulrich, A. C. (2017). Bioremediation of Oil Spills on Land. In Oil Spill Science and Technology: Second Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809413-6.00012-6
  20. Chauhan, P., Rajguru, A. B., Dudhe, M. Y., & Mathur, J. (2020). Efficacy of lead (Pb) phytoextraction of five varieties of Helianthus annuus L. from contaminated soil. Environmental Technology and Innovation, 18, 100718. https://doi.org/10.1016/j.eti.2020.100718
  21. Cui, L., Tian, X., Xie, H., Cong, X., Cui, L., Wu, H., Wang, J., Li, B., Zhao, J., Cui, Y., Feng, X., & Li, Y. F. (2023). Cardamine violifolia as a potential Hg hyperaccumulator and the cellular responses. Science of the Total Environment, 863(December 2022), 160940. https://doi.org/10.1016/j.scitotenv.2022.160940
  22. Deng, Z., & Cao, L. (2017). Fungal endophytes and their interactions with plants in phytoremediation: A review. Chemosphere, 168, 1100–1106. https://doi.org/10.1016/j.chemosphere.2016.10.097
  23. Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. Environmental Science and Pollution Research, 27(2), 1319–1333. https://doi.org/10.1007/s11356-019-06967-1
  24. Dulanlebit, Y. H., Unwakoly, S., & Sangadji, R. P. (2021). Studi Potensi Pteris vitata, Amaranthus spinosus, Ipomoea reptanspoir sebagai Fitoremediator Tanah Tercemar Merkuri (Hg). Molluca Journal of Chemistry Education, 11(1), 32–38
  25. Ejaz, U., Khan, S. M., Khalid, N., Ahmad, Z., Jehangir, S., Fatima Rizvi, Z., Lho, L. H., Han, H., & Raposo, A. (2023). Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Frontiers in Plant Science, 14(May), 1–17. https://doi.org/10.3389/fpls.2023.1154571
  26. Eslami, E., & Joodat, S. H. S. (2018). Bioremediation of oil and heavy metal contaminated soil in construction sites: a case study of using bioventing-biosparging and phytoextraction techniques
  27. Gani, A., Hussain, A., Pathak, S., & Banerjee, A. (2024). An empirical investigation on the elimination of heavy metals using bioremediation method for selected plant species. Physics and Chemistry of the Earth, 134(September 2023), 103568. https://doi.org/10.1016/j.pce.2024.103568
  28. Gao, R., Wang, Y., Zhang, Y., Tong, J., & Dai, W. (2017). Cobalt(II) bioaccumulation and distribution in Rhodopseudomonas palustris. Biotechnology and Biotechnological Equipment, 31(3), 527–534. https://doi.org/10.1080/13102818.2017.1292148
  29. Geetha, A., Bhavya, K., & Saidaiah, P. (2022). Phytoremediation as a novel approaches to revegetation of heavy metal in polluted soil. The Pharma Innovation, 11(12), 6129–6137
  30. Gola, D., Dey, P., Bhattacharya, A., Mishra, A., Malik, A., Namburath, M., & Ahammad, S. Z. (2016). Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresource Technology, 218, 388–396
  31. https://doi.org/10.1016/j.biortech.2016.06.096
  32. Gul, I., Manzoor, M., Silvestre, J., Rizwan, M., Hina, K., Kallerhoff, J., & Arshad, M. (2019). EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil. International Journal of Phytoremediation, 21(2), 101–110. https://doi.org/10.1080/15226514.2018.1474441
  33. Haya, D. A. F. (2023). Potensi Jamur Indigenous dari Tanah TPA Piyungan dalam Bioremediasi Logam Timbal (Pb) (Doctoral dissertation, Universitas Islam Indonesia)
  34. Heny, D. K. N., Dhanti, K. R., & Wardani, D. P. K. (2022). Analisi Kandungan Timbal (Pb) Pada Air Sumur Di Sekitar Tempat Pembuangan Akhir Kalipancur Kabupaten Purbalingga. Jurnal Analis Medika Biosains (JAMBS), 9(1), 01. https://doi.org/10.32807/jambs.v9i1.224
  35. Herlina, L., Widianarko, B., & Sunoko, H. R. (2020). Phytoremediation potential of cordyline fruticosa for lead contaminated soil. Jurnal Pendidikan IPA Indonesia, 9(1), 42–49. https://doi.org/10.15294/jpii.v9i1.23422
  36. Hussein, S. H., Qurbani, K., Ahmed, S. K., Tawfeeq, W., & Hassan, M. (2024a). Bioremediation of heavy metals in contaminated environments using Comamonas species: A narrative review. Bioresource Technology Reports, 25(September 2023), 101711. https://doi.org/10.1016/j.biteb.2023.101711
  37. Hussein, S. H., Qurbani, K., Ahmed, S. K., Tawfeeq, W., & Hassan, M. (2024b). Bioremediation of heavy metals in contaminated environments using Comamonas species: A narrative review. Bioresource Technology Reports, 25(November 2023), 101711. https://doi.org/10.1016/j.biteb.2023.101711
  38. Ibrahim, W. M., S Abdel Aziz, Y., Hamdy, S. M., & Gad, N. S. (2018). Comparative Study for Biosorption of Heavy Metals from Synthetic Wastewater by Different Types of Marine Algae. Journal of Bioremediation & Biodegradation, 09(01), 5–11. https://doi.org/10.4172/2155-6199.1000425
  39. Innah, M. Z., & Umar, M. R. (2023). Fitoremediasi Tanaman Hias Bunga Impatiens balsamina L., dan Zinnia elegans (Jacq.) Kuntze terhadap Polutan Merkuri pada Tanah. Bioma: Jurnal Biologi Makassar, 8(2), 1–10
  40. Jeyakumar, P., Debnath, C., Vijayaraghavan, R., & Muthuraj, M. (2023). Trends in Bioremediation of Heavy Metal Contaminations. Environmental Engineering Research, 28(4), 0–2. https://doi.org/10.4491/eer.2021.631
  41. Kapahi, M., & Sachdeva, S. (2019). I2156-9614-9-24-191203. 9(24)
  42. Karimah, K. (2023). Potensi Jamur Indigenous Tanah TPA Piyungan Sebagai Bioremediasi Logam Kadmium (Doctoral dissertation, Universitas Islam Indonesia). Universitas Islam Indonesia
  43. Karn, R., Ojha, N., Abbas, S., & Bhugra, S. (2021). A review on heavy metal contamination at mining sites and remedial techniques. IOP Conference Series: Earth and Environmental Science, 796(1). https://doi.org/10.1088/1755-1315/796/1/012013
  44. Kementrian ESDM RI. (2020). Peluang Investasi Nikel Indonesia. In Kementrian Energi dan Sumber Daya Mineral Republik Indonesia (pp. 1–40). https://www.esdm.go.id/id/booklet/booklet-tambang-nikel-2020
  45. Khadim, H. J., Ammar, S. H., & Ebrahim, S. E. (2019). Biomineralization based remediation of cadmium and nickel contaminated wastewater by ureolytic bacteria isolated from barn horses soil. Environmental Technology and Innovation, 14, 100315. https://doi.org/10.1016/j.eti.2019.100315
  46. Khilji, S. A., Waseem, M., Tariq, S., Jabeen, S., Jamal, A., Alomrani, S. O., Javed, T., & Riaz, A. (2024). Microbe assisted phytoremediation of heavy metal contaminated soil by using African marigold (Tagetes erecta L.). Plant Stress, 11(February), 100369. https://doi.org/10.1016/j.stress.2024.100369
  47. Latif, U. T. A., Putri, A. E., & Masri, M. (2023). Optimalisasi Penyerapan Logam Berat Tembaga (Cu) oleh Alcaligenes faecalis sebagai Upaya Bioremediasi. Celebes Biodiversitas Jurnal Sains Dan Pendidikan Biologi, 6(1), 43–46
  48. Lee, J., Kim, J. R., Jeong, S., Cho, J., & Kim, J. Y. (2017). Long-term performance of anaerobic digestion for crop residues containing heavy metals and response of microbial communities. Waste Management, 59, 498–507. https://doi.org/10.1016/j.wasman.2016.10.005
  49. León-Vaz, A., León, R., Giráldez, I., Vega, J. M., & Vigara, J. (2021). Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation. Aquatic Toxicology, 239(August). https://doi.org/10.1016/j.aquatox.2021.105941
  50. Li, X., Zhang, D., Sheng, F., & Qing, H. (2018). Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicology and Environmental Safety, 147(April 2017), 357–366. https://doi.org/10.1016/j.ecoenv.2017.08.058
  51. Lin, C., Cheruiyot, N. K., Bui, X. T., & Ngo, H. H. (2022). Composting and its application in bioremediation of organic contaminants. Bioengineered, 13(1), 1073–1089. https://doi.org/10.1080/21655979.2021.2017624
  52. Liu, C. J., Deng, S. G., Hu, C. Y., Gao, P., Khan, E., Yu, C. P., & Ma, L. Q. (2023). Applications of bioremediation and phytoremediation in contaminated soils and waters: CREST publications during 2018–2022. Critical Reviews in Environmental Science and Technology, 53(6), 723–732. https://doi.org/10.1080/10643389.2023.2168365
  53. Madhav, S., Mishra, R., Kumari, A., Srivastav, A. L., Ahamad, A., Singh, P., & Sillanpää, M. (2024). A Review on Sources Identification of Heavy Metals in Soil and Remediation Measures by Phytoremediation-induced Methods. International Journal of Environmental Science and Technology, 21(1), 1099–1120
  54. Manguilimotan, L. C., & Bitacura, J. G. (2018). Biosorption of Cadmium by Filamentous Fungi Isolated from Coastal Water and Sediments. Journal of Toxicology, 2018. https://doi.org/10.1155/2018/7170510
  55. Maslan, M. (2022). Isolasi dan Identifikasi Bakteri Pengakumulasi Logam Berat sebagai Agen Bioremediasi dari Pesisir Kawasan Industri di Desa Fatufia, Kecamatan Bahodopi, Kabupaten Morowali, Provinsi Sulawesi Tengah. Universitas Islam Negeri Maulana Malik Ibrahim
  56. Montreemuk, J., Stewart, T. N., & Prapagdee, B. (2024). Bacterial-assisted phytoremediation of heavy metals: Concepts, current knowledge, and future directions. Environmental Technology and Innovation, 33(November 2023), 103488. https://doi.org/10.1016/j.eti.2023.103488
  57. Nanda, M., Kumar, V., & Sharma, D. K. (2019). Multimetal tolerance mechanisms in bacteria: The resistance strategies acquired by bacteria that can be exploited to ‘clean-up’ heavy metal contaminants from water. Aquatic Toxicology, 212(January), 1–10. https://doi.org/10.1016/j.aquatox.2019.04.011
  58. Nandini.M.R Udayashankara.T.H Madhukar.M. (2019). A Review on Chitosan for the Removal of Heavy Metals Ions. Journal of Fiber Bioengineering and Informatics, 12(3), 103–128. https://doi.org/10.3993/JFBIM00301
  59. Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3), 1–19. https://doi.org/10.1007/s42452-021-04301-4
  60. Neneng, L., Ardianoor, Usup, H. L. D., Adam, C., Zakaria, Ghazella, A., Perangin-angin, S. B., & Alvianita, V. (2020). Potensi Chlorella sp . dan Pseudomonas sp . dari Areal Tambang Emas sebagai Mikroorganisme Potensial Pereduksi Merkuri. Jurnal Ilmu Lingkungan, 18(3), 617–625. https://doi.org/10.14710/jil.18.3.617
  61. Newsome, L., & Falagán, C. (2021). The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GeoHealth, 5(10), 1–53. https://doi.org/10.1029/2020GH000380
  62. Nivetha, N., Srivarshine, B., Sowmya, B., Rajendiran, M., Saravanan, P., Rajeshkannan, R., Rajasimman, M., Pham, T. H. T., Shanmugam, V. K., & Dragoi, E. N. (2023). A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere, 312(P1), 137099
  63. https://doi.org/10.1016/j.chemosphere.2022.137099
  64. Nwankwegu, A. S., Zhang, L., Xie, D., Onwosi, C. O., Muhammad, W. I., Odoh, C. K., Sam, K., & Idenyi, J. N. (2022). Bioaugmentation as a green technology for hydrocarbon pollution remediation. Problems and prospects. Journal of Environmental Management, 304(August 2021), 114313. https://doi.org/10.1016/j.jenvman.2021.114313
  65. Ojo, G. J., Onile, O. S., Momoh, A. O., Oyeyemi, B. F., Omoboyede, V., Fadahunsi, A. I., & Onile, T. (2023). Physiochemical analyses and molecular characterization of heavy metal-resistant bacteria from Ilesha gold mining sites in Nigeria. Journal of Genetic Engineering and Biotechnology, 21(1). https://doi.org/10.1186/s43141-023-00607-5
  66. Ojuederie, O. B., & Babalola, O. O. (2017). Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. International Journal of Environmental Research and Public Health, 14(12). https://doi.org/10.3390/ijerph14121504
  67. Pajarina, E. S. (2023). Analisis Normatif Sanksi Bagi Para Pelaku Pencemaran dan Kerusakan Lingkungan Berdasarkan Prespektif Hukum Lingkungan. Comserva Jurnal Penelitian Dan Pengabdian Masyarakat, 2(12), 3011–3019
  68. Pande, V., Pandey, S. C., Sati, D., Bhatt, P., & Samant, M. (2022). Microbial Interventions in Bioremediation of Heavy Metal Contaminants in Agroecosystem. Frontiers in Microbiology, 13(May), 1–16. https://doi.org/10.3389/fmicb.2022.824084
  69. Praveen, R., & Nagalakshmi, R. (2022). Review on bioremediation and phytoremediation techniques of heavy metals in contaminated soil from dump site. Materials Today: Proceedings, 68, 1562–1567. https://doi.org/10.1016/j.matpr.2022.07.190
  70. Priatni, S., Ratnaningrum, D., Warya, S., & Audina, E. (2018). Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. IOP Conference Series: Earth and Environmental Science, 160(1). https://doi.org/10.1088/1755-1315/160/1/012006
  71. Priyadarshanee, M., & Das, S. (2021). Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. Journal of Environmental Chemical Engineering, 9(1), 104686. https://doi.org/10.1016/j.jece.2020.104686
  72. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology and Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393
  73. Ramadhoni, F. M., Rastina, & Prartono, T. (2020). Partisi Geokimia Logam Berat Ni, Cu dan Cd pada Sedimen di Perairan Morowali, Sulawesi Tengah. http://repository.ipb.ac.id/handle/123456789/106433
  74. Rengarajan, S., Deepa, S., Natarajan, D., Pandian, A., Al-Ansari, M. M., Oza, G., Castillo-Maldonado, I., & Sharma, A. (2024). Bioremediation potential of biochar and metal tolerant Bacillus cereus on heavy metal polluted mine surrounding pond and assessed cytotoxicity and phytotoxicity attributes of treated water on Brine shrimp larvae and
  75. Paddy seedling. Journal of the Taiwan Institute of Chemical Engineers, xxxx, 105330. https://doi.org/10.1016/j.jtice.2023.105330
  76. Rumbia, N. A., Irawati, Erzam, S. H., Pou, A., Jahidin, & Syamsul, R. H. (2023). Analisis Kandungan Logam Berat Pada Sedimen Dasar Sepanjang Daerah Aliran Sungai (Das) Puuwiau Kecamatan Tinanggea, Kabupaten Konawe Selatan, Provinsi Sulawesi Tenggara. Jurnal Pengolahan Dan Teknologi Lingkungan, 2(1), 52–59
  77. Sabreena, Hassan, S., Bhat, S. A., Kumar, V., Ganai, B. A., & Ameen, F. (2022). Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. Plants, 11(9), 1–28. https://doi.org/10.3390/plants11091255
  78. Santos, F. M., Mazur, L. P., Mayer, D. A., Vilar, V. J. P., & Pires, J. C. M. (2019). Inhibition effect of zinc, cadmium, and nickel ions in microalgal growth and nutrient uptake from water: An experimental approach. Chemical Engineering Journal, 366(October 2018), 358–367. https://doi.org/10.1016/j.cej.2019.02.080
  79. Sarangi, N. V., & Rajkumar, R. (2024). Biosorption potential of Stoechospermum marginatum for removal of heavy metals from aqueous solution: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Research and Design, 203(September 2023), 207–218. https://doi.org/10.1016/j.cherd.2024.01.020
  80. Saravanan, A., Yaashikaa, P. R., Ramesh, B., Shaji, A., & Deivayanai, V. C. (2024). Microorganism-mediated bioremediation of dyes from contaminated soil: Mechanisms, recent advances, and future perspectives. Food and Chemical Toxicology, 185(February), 114491. https://doi.org/10.1016/j.fct.2024.114491
  81. Sarkodie, E. K., Jiang, L., Li, K., Yang, J., Guo, Z., Shi, J., Deng, Y., Liu, H., Jiang, H., Liang, Y., Yin, H., & Liu, X. (2022). A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Frontiers in Microbiology, 13(December). https://doi.org/10.3389/fmicb.2022.1049277
  82. Sayqal, A., & Ahmed, O. B. (2023). Retracted: Advances in Heavy Metal Bioremediation: An Overview. Applied Bionics and Biomechanics, 2023, 1–1. https://doi.org/10.1155/2023/9871378
  83. Scalvenzi, M. N. R. and L. (2018). World ’ s largest Science , Technology & Medicine Open Access book publisher Petroleum Degradation : Promising Biotechnological Petroleum Degradation : Promising Biotechnological Tools for Bioremediation Tools for Bioremediation
  84. Schommer, V. A., Vanin, A. P., Nazari, M. T., Ferrari, V., Dettmer, A., Colla, L. M., & Piccin, J. S. (2023). Biochar-immobilized Bacillus spp. for heavy metals bioremediation: A review on immobilization techniques, bioremediation mechanisms and effects on soil. Science of the Total Environment, 881(February), 163385. https://doi.org/10.1016/j.scitotenv.2023.163385
  85. Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. S. M. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments-A review. Frontiers in Environmental Science, 7(May). https://doi.org/10.3389/fenvs.2019.00066
  86. Setianingsih, S., & Titah, H. S. (2020). Potensi Metode Co-Composting pada Bioremediasi Sampah Organik Biodegradable. Jurnal Teknik ITS, 9(2), 103–110
  87. Shah, V., & Daverey, A. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology and Innovation, 18, 100774. https://doi.org/10.1016/j.eti.2020.100774
  88. Shamim, S. (2018). Biosorption of Heavy Metals Saba. In Intech (Vol. 11, Issue tourism)
  89. Sharma, I. (2020). Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. Intech, i(tourism), 13
  90. Sharma, J. (2019). Advantages and Limitations of In Situ Methods of Bioremediation. Recent Advances in Biology and Medicine, 5, 1. https://doi.org/10.18639/rabm.2019.955923
  91. Sharma, J. K., Kumar, N., Singh, N. P., & Santal, A. R. (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Frontiers in Plant Science, 14(January), 1–13. https://doi.org/10.3389/fpls.2023.1076876
  92. Sihombing, D., Nainggolan, R. C., Simamora, Y. D., & Irawati, W. (2024). Analisis Kemampuan Gen MerB Pada Bakteri Pseudomonas sp. Sebagai Agen Bioremediasi Lingkungan Cemar Logam Berat Merkuri (Hg). BioActive: Journal of Biological Education
  93. and Research, I(I), 11–19
  94. Singh, R. (2017). Microbial Biotransformation: A Process for Chemical Alterations. Journal of Bacteriology & Mycology: Open Access, 4(2). https://doi.org/10.15406/jbmoa.2017.04.00085
  95. Sri Lakshmi Ramya Krishna Kanamarlapudi, V. K. C. and S. M. (2018). Application of Biosorption for Removal of Heavy Metals from Wastewater. In Biosorption. https://doi.org/DOI: 10.5772/intechopen.77315
  96. Suparman, N., Retnaningrum, E., & Fajriatun, N. (2023). Isolasi , Identifikasi , dan Uji Potensi Bakteri Laut sebagai Agen Bioremediasi Logam Berat Kromium (Cr). Jurnal Sumber Daya Alam Dan Lingkungan, 10(3), 114–125
  97. Syarifuddin, N. (2022). Pengaruh Industri Pertambangan Nikel Terhadap Kondisi Lingkungan Maritim di Kabupaten Morowali. Jurnal Riset &Teknologi Terapan Kemaritiman, 19–23. https://doi.org/10.25042/jrt2k.122022.03
  98. Tariq, A., Ullah, U., Asif, M., & Sadiq, I. (2019). Biosorption of arsenic through bacteria isolated from Pakistan. International Microbiology, 22(1), 59–68. https://doi.org/10.1007/s10123-018-0028-8
  99. Timková, I., Sedláková-Kaduková, J., & Pristaš, P. (2018). Biosorption and bioaccumulation abilities of actinomycetes/streptomycetes isolated from metal contaminated sites. Separations, 5(4). https://doi.org/10.3390/separations5040054
  100. Tribedi, P., Goswami, M., Chakraborty, P., Mukherjee, K., Mitra, G., Bhattacharyya, P., & Dey, S. (2018). Bioaugmentation and biostimulation: a potential strategy for environmental remediation. Journal of Microbiology & Experimentation, 6(5), 223–231. https://doi.org/10.15406/jmen.2018.06.00219
  101. Tufail, M., Iltaf, J., Zaheer, T., Tariq, L., Amir, M., Fatima, R., Asbat, A., Kabeer, T., Fahad, M., Naeem, H., Shoukat, U., Noor, H., Awais, M., Umar, W., & Ayyub, M. (2022). Recent advances in bioremediation of heavy metals and persistent organic pollutants: A review. Sci Total Environ
  102. Utomo, S. W., Rahmadina, F., Wispriyono, B., Kusnoputranto, H., & Asyary, A. (2021). Metal Contents of Lake Fish in Area Close to Disposal of Industrial Waste. Journal of Environmental and Public Health
  103. Vega-Páez, J. D., Rivas, R. E., & Dussán-Garzón, J. (2019). High efficiency mercury sorption by dead biomass of Lysinibacillus sphaericus-new insights into the treatment of contaminated water. Materials, 12(8), 1–13. https://doi.org/10.3390/ma12081296
  104. Vela-García, N., Guamán-Burneo, M. C., & González-Romero, N. P. (2019). Efficient bioremediation from metallurgical effluents through the use of microalgae isolated from the amazonic and highlands of Ecuador. Revista Internacional de Contaminacion Ambiental, 35(4), 917–929. https://doi.org/10.20937/RICA.2019.35.04.11
  105. Walhi. (n.d.). Sungai sekitar Tambang dan Industri Nikel di Morowali terpapar kandungan logam. https://walhisulteng.org/sungai-sekitar-tambang-dan-industri-nikel-di-morowali-terpapar-kandungan-logam/
  106. Woldemariam, W. G. (2019). Mushrooms in the Bio-Remediation of Wastes from Soil. Advances in Life Science and Technology, 76, 41–47. https://doi.org/10.7176/alst/76-04
  107. Wróbel, M., Śliwakowski, W. Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by The Genus Bacillus. International Journal of Environmental Research and Public Health, 20(6), 4964
  108. Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S., & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11(April), 1–15. https://doi.org/10.3389/fpls.2020.00359
  109. Zhang, D., Yin, C., Abbas, N., Mao, Z., & Zhang, Y. (2020). Multiple heavy metal tolerance and removal by an earthworm gut fungus Trichoderma brevicompactum QYCD-6. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-63813-y
  110. Zhang, K., Liu, F., Zhang, H., Duan, Y., Luo, J., Sun, X., Wang, M., Ye, D., Wang, M., Zhu, Z., & Li, D. (2024). Trends in phytoremediation of heavy metals-contaminated soils: A Web of science and CiteSpace bibliometric analysis. Chemosphere, 352(October 2023), 141293. https://doi.org/10.1016/j.chemosphere.2024.141293
  111. Zhou, B., Zhang, T., & Wang, F. (2023). Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination. Applied Sciences (Switzerland), 13(14). https://doi.org/10.3390/app13148439

Last update:

No citation recorded.

Last update: 2025-11-08 10:50:46

No citation recorded.