skip to main content

Optimasi pH, Massa Adsorben, Konsentrasi, Waktu Kontak, dan Pelarut Desorpsi pada Dispersive Solid Phase Extraction Berbasis Karbon Aktif dari Kayu Bakau untuk Penentuan Residu Ciprofloxacin

1Jurusan Kimia, FMIPA, Universitas Lampung, Jl.Prof. Dr. Ir. Sumantri Brojonegoro, Gedong Meneng, Kec. , Indonesia

2Rajabasa, Kota Bandar Lampung, Lampung 35141, Indonesia, Indonesia

3Jurusan Kimia, FMIPA, Universitas Lampung, Indonesia, Indonesia

Received: 16 Dec 2024; Revised: 23 Nov 2025; Accepted: 28 Nov 2025; Available online: 16 Dec 2025; Published: 31 Dec 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Penelitian ini bertujuan mengoptimalkan metode Dispersive Solid Phase Extraction (DSPE) berbasis karbon aktif dari kayu bakau untuk penentuan residu ciprofloxacin sebagai upaya mengurangi potensi pencemaran perairan oleh antibiotik. Karbon aktif yang digunakan memenuhi standar SNI 06-3730-1995. Karakterisasi SEM-EDX menunjukkan pori-pori lebih terbuka setelah aktivasi, dengan peningkatan kadar karbon dari 86,72% menjadi 87,71% serta penurunan oksigen dari 13,28% menjadi 12,29%. Analisis FTIR mengonfirmasi adanya gugus OH, C=O, C=C, dan C–O yang berperan dalam adsorpsi. Optimasi DSPE menunjukkan kondisi optimum pada konsentrasi 2 ppm, pH 4, massa adsorben 20 mg, dan waktu kontak 50 menit, dengan efisiensi adsorpsi 79,85%. Kondisi desorpsi terbaik diperoleh menggunakan pelarut asam asetat:metanol (2:8) dengan efisiensi 80,51%. Analisis isoterm menunjukkan bahwa model Langmuir maupun Freundlich hanya memberikan kecocokan moderat, sehingga diperlukan pendekatan isoterm lain untuk memahami mekanisme adsorpsi secara lebih komprehensif. Validasi metode menggunakan UV-Vis menunjukkan linearitas sangat baik dengan nilai R sebesar 0,9975, serta sensitivitas memadai dengan LoD 0,0461 ppm dan LoQ 0,1536 ppm. Nilai RSD 4,3518% dan recovery 80,89% memenuhi kriteria validasi analitik. Hasil ini menunjukkan bahwa karbon aktif kayu bakau berpotensi digunakan sebagai adsorben dalam penentuan dan pengolahan residu ciprofloxacin pada lingkungan perairan.

Fulltext View|Download
Keywords: Karbon Aktif; Kayu Bakau; Adsorpsi; Optimasi DSPE; Ciprofloxacin

Article Metrics:

  1. Abas, S. N. A., Ismail, M. H. S., Siajam, S. I., & Kamal, M. L. (2015). Development of novel adsorbent-mangrove-alginate composite bead (MACB) for removal of Pb(II) from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 50, 182–189. https://doi.org/10.1016/j.jtice.2014.11.013
  2. Agustanty, A., & Budi, A. (2022). POLA RESISTENSI BAKTERI VIBRIO CHOLERAE TERHADAP ANTIBIOTIK CIPROFLOXACIN DAN TETRACYCLINE POLA. Journal Health & Science : Gorontalo Journal Health and Science Community, 5(3), 73–78. https://doi.org/10.35971/gojhes.v5i3.13611
  3. AOAC. (2016). Guidelines for Standard Method Performance Requirements. AOAC INTERNATIONAL. https://doi.org/10.1093/9780197610145.005.006
  4. Babita, K., Kalra, K., Rajpoot, N., Joshi, P., & Pokhriyal, V. (2023). Simultaneous Estimation of Ciprofloxacin and Tinidazole by U.V Spectrophotometer using a Hydrotropic Solubilization Technique. Biomedical and Pharmacology Journal, 16(1), 399–404. https://doi.org/10.13005/bpj/2621
  5. Badan Standardisasi Nasional. (1995). SNI 06-3730-1995: Arang Aktif Teknis
  6. Bruni, P., Avino, P., Ferrone, V., Pilato, S., Barbacane, N., Canale, V., Carlucci, G., & Ferrari, S. (2023). Preparation of Fe3O4-Reduced Graphene-Activated Carbon from Wastepaper in the Dispersive Solid-Phase Extraction and UHPLC-PDA Determination of Antibiotics in Human Plasma. Separations, 10(2). https://doi.org/10.3390/separations10020115
  7. Chan, C.C., H.L.y. C. Lee, X. Zhang. (2004). Analytical Method Validation and Instrumental Performent Verification. Willey Intercine A. John Willy and Sons, Inc Publication
  8. Christian, G. D. (1994). Analytical Chemistry (5th Editio). John Wiley and Sons
  9. Diniz, V., Rath, G., Rath, S., Rodrigues-Silva, C., Guimarães, J. R., & Cunha, D. G. F. (2021). Long-term ecotoxicological effects of ciprofloxacin in combination with caffeine on the microalga Raphidocelis subcapitata. Toxicology Reports, 8, 429–435. https://doi.org/10.1016/j.toxrep.2021.02.020
  10. Faleye, A. C., Adegoke, A. A., Ramluckan, K., Bux, F., & Stenström, T. A. (2018). Antibiotic Residue in the Aquatic Environment: Status in Africa. Open Chemistry, 16(1), 890–903. https://doi.org/10.1515/chem-2018-0099
  11. Huang, L., Wang, M., Shi, C., Huang, J., & Zhang, B. (2014). Adsorption of tetracycline and ciprofloxacin on activated carbon prepared from lignin with H3PO4 activation. Desalination and Water Treatment, 52(13–15), 2678–2687. https://doi.org/10.1080/19443994.2013.833873
  12. Hunge, Y. M., Yadav, A. A., Kang, S. W., Jun Lim, S., & Kim, H. (2023). Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. Journal of Photochemistry and Photobiology A: Chemistry, 434, 114250. https://doi.org/10.1016/J.JPHOTOCHEM.2022.114250
  13. International Union of Pure and Applied Chemistry (IUPAC). 2002. Compendium of Chemical Terminology (Gold Book)
  14. Kadang, M. R. A. M., Anas, M., & Mongkito, V. H. R. . (2020). Efek variasi Konsentrasi zat aktivator H3PO4 terhadap daya serap karbon aktif cangkang kemiri. Jurnal Penelitian Pendidikan Fisika, 5(4), 328–333
  15. Khataei, M. M., Epi, S. B. H., Lood, R., Spégel, P., Yamini, Y., & Turner, C. (2022). A review of green solvent extraction techniques and their use in antibiotic residue analysis. Journal of Pharmaceutical and Biomedical Analysis, 209, 114487. https://doi.org/10.1016/j.jpba.2021.114487
  16. Manousi, N., Deliyanni, E. A., Rosenberg, E., & Zachariadis, G. A. (2021). Ultrasound-assisted magnetic solid-phase extraction of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons from water samples with a magnetic polyaniline modified graphene oxide nanocomposite. Journal of Chromatography A, 1645, 462104. https://doi.org/10.1016/J.CHROMA.2021.462104
  17. Maryudi, M., Salamah, S., & Rahayu, A. (2021). The Capability of Mangrove Charcoal in Adsorption Process of Indigosol Substance in Wastewater of Batik Industry. Jurnal Bahan Alam Terbarukan, 10(2), 69–74. https://doi.org/10.15294/jbat.v10i2.33351
  18. Masthura, M., & Putra, Z. (2018). Karakterisasi Mikrostruktur Karbon Aktif Tempurung Kelapa dan Kayu Bakau. Elkawnie, 4(1), 45–54. https://doi.org/10.22373/ekw.v4i1.3076
  19. Muhajir, A., Machdar, I., & Mariana, M. (2021). Produksi karbon aktif arang tempurung kelapa menggunakan kombinasi metode aktivasi secara kimia dan steam tekanan rendah. Jurnal Litbang Industri, 11(2), 110. https://doi.org/10.24960/jli.v11i2.7104.110-116
  20. Muslim, Z., Novrianti, A., & Irnameria, D. (2020). Resistance Test of Bacterial Causes of Urinary Tract Infection Against Ciprofloxacin and Ceftriaxone Antibiotics. Jurnal Teknologi Dan Seni Kesehatan, 11(2), 203–212. https://doi.org/10.36525/sanitas.2020.19
  21. Nugraha, F., Kurniawan, H., & Yastiara, I. (2023). Penetapan Kadar Paracetamol dalam Jamu di Kota Pontianak Menggunakan Instrumen Spektrofotometri UV-Vis. Indonesian Journal of Pharmaceutical Education, 3(1), 77–87. https://doi.org/10.37311/ijpe.v3i1.18876
  22. Paryanto, P., Saputro, M. E., & Nugroho, R. A. (2019). Produksi Karbon Aktif Dari Buah Mangrove Menggunakan Aktivator Kalium Hidroksida. Jurnal Inovasi Teknik Kimia, 4(1), 2012–2014. https://doi.org/10.31942/inteka.v4i1.2684
  23. Putri, W., & Musfirah. (2019). Efektivitas Arang Aktif Kayu Bakau Terhadap Penurunan Kadar Logam Besi (Fe) Air Sumur Gali. Fakultas Kesehatan Masyarakat, Universitas Ahmad Dahlan,
  24. Rinawati, R., Kiswandono, A. A., Juliasih, N. L. G. R., & Permana, F. D. (2019). Pemanfaatan Karbon Aktif Sekam Padi sebagai Adsorben Phenantrena dalam Solid Phase Extraction. Al-Kimiya, 6(2), 75–80. https://doi.org/10.15575/ak.v6i2.6495
  25. Rinawati, Rahmawati, A., Muthia, D. R., Imelda, M. D., Latief, F. H., Mohamad, S., & Kiswandono, A. A. (2024). Removal of ceftriaxone and ciprofloxacin antibiotics from aqueous solutions using graphene oxide derived from corn cob. Global Journal of Environmental Science and Management, 10(2), 573–588. https://doi.org/10.22035/gjesm.2024.02.10
  26. Rodrigues-Silva, C., Porto, R. S., dos Santos, S. G., Schneider, J., & Rath, S. (2019). Fluoroquinolones in hospital wastewater: Analytical method, occurrence, treatment with ozone and residual antimicrobial activity evaluation. Journal of the Brazilian Chemical Society, 30(7), 1447–1457. https://doi.org/10.21577/0103-5053.20190040
  27. Tran, Q. T., Do, T. H., Ha, X. L., Nguyen, H. P., Nguyen, A. T., Ngo, T. C. Q., & Chau, H. D. (2022). Study of the Ciprofloxacin Adsorption of Activated Carbon Prepared from Mangosteen Peel. Applied Sciences (Switzerland), 12(17). https://doi.org/10.3390/app12178770
  28. Udyani, K., Purwaningsih, D. Y., Setiawan, R., & Yahya, K. (2019). Pembuatan Karbon Aktif Dari Arang Bakau Menggunakan Gabungan Aktivasi Kimia dan Fisika Dengan Microwave. IPTEK, 23, 39–46. https://doi.org/10.31284/j.iptek.2019.v23i1
  29. Wang, M., Li, G., Huang, L., Xue, J., Liu, Q., Bao, N., & Huang, J. (2017). Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate. Ecotoxicology and Environmental Safety, 139(January), 36–42. https://doi.org/10.1016/j.ecoenv.2017.01.006
  30. Wardani, G. A., Octavia, A. N., Fathurohman, M., Hidayat, T., & Nofiyanti, E. (2022). Arang Aktif Ampas Tebu Termodifikasi Kitosan sebagai Adsorben Tetrasiklin: Pemanfaatan Metode Kolom. KOVALEN: Jurnal Riset Kimia, 8(3), 280–291. https://doi.org/10.22487/kovalen.2022.v8.i3.16090

Last update:

No citation recorded.

Last update: 2026-01-01 01:57:12

No citation recorded.