skip to main content

Planetscope Imagery Capabilities for Mapping Aboveground Carbon Stock Estimation of Mangroves in Part of Mandeh Area, Pesisir Selatan Regency, West Sumatera Province

1Study Program of Remote Sensing and Geographic Information Systems, Vocational School, Universitas Negeri Padang, Indonesia, Indonesia

2Department of Geography, Faculty of Social Science, Universitas Negeri Padang, Indonesia, Indonesia

3Korea-Indonesia Marine Technology Cooperation Research Center, Cirebon, Indonesia, Indonesia

4 Diploma Program in Remote Sensing Technology, Universitas Negeri Padang, Indonesia, Indonesia

View all affiliations
Received: 8 Jan 2025; Revised: 14 Jul 2025; Accepted: 20 Jul 2025; Available online: 30 Sep 2025; Published: 8 Oct 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract
PlanetScope has a multispectral sensor that can identify and map various land cover types, which play an important role in carbon storage. The purpose of this study was to map the estimated mangrove carbon stock spatially. The research method used was a remote sensing approach using the Difference Vegetation Index (DVI) vegetation index and regression analysis between field carbon values and vegetation index values to produce an estimate of the carbon stock above the mangrove surface. In this study, the dominant species found included Rizophora apiculata and Sonneratia alba with an average tree diameter of 10.84 cm for the Sonneratia alba species, and a tree diameter of 38.82 cm for the Rhizophora apiculata species. The total biomass value at the study location was 147,752 tons/ha with the lowest biomass value of 0.386 tons/ha in the dominant species Sonneratia alba, and the highest being 25.943 tons/ha in the dominant species Rhizophora apiculata. The total value of field carbon stock is 69.443 tons/ha with the lowest carbon value of 0.182 tons/ha and the highest of 12.193 tons/ha from the calculation results using species-based allometry. In comparison, the total estimated value of carbon stock from imagery is 0.080 tons/ha. This study produced an error of 3.163 tons/ha which means it has a good accuracy value. A better level of accuracy is indicated by the lower value obtained from the standard error estimate. Research using remote sensing data can better understand the important role of mangroves in carbon storage and climate change mitigation efforts, as well as support the sustainability of ecosystems that provide many benefits to the environment and society. Mapping mangrove carbon stocks using remote sensing methods not only provides accurate and comprehensive data but also increases our capacity to manage and conserve mangrove ecosystems.
Fulltext View|Download
Keywords: PlanetScope, Mangroves, Carbon Stock, Biomass, Difference Vegetation Index (DVI)
Funding: Institute for Research and Community Service, Universitas Negeri Padang (contract number 1605/UN35.15/LT/2024)

Article Metrics:

  1. Alongi, D. M. (2022). Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forest. Forests, 13(2), 149. https://doi.org/10.3390/f13020149
  2. Amira, S. (2008). Pendugaan biomassa jenis Rhizophora apiculata Bl. di hutan mangrove Batu Ampar kabupaten Kubu Raya, Kalimantan Barat. Environmental Science
  3. Bindu, G., Rajan, P., Jishnu, E. S., Joseph, K. A. (2020). Carbon Stock Assessment of Mangroves Using Remote Sensing and Geographic Information System. The Egyptian Journal of Remote Sensing and Space Sciences, 23, 1-9. https://doi.org/10.1016/j.ejrs.2018.04.006
  4. Duke, N. C. Indo-Wset Pacific Stlit Mangrove Rhizophora Apiculata, R. Mucronata, R. Stylosa, R. X annamalai, R. X lamarckii. Species Profiles for Pacific Island Agroforestry, 1-19
  5. Frazier, A. E., Hemingway, B. L. (2021). A Techincal Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sensing, 13(19), 3930. https://doi.org/10.3390/rs13193930
  6. Friess, D. A., Krauss, K. W., Taillardat, P., Adame, M. F., Yando, E. S., Cameron, C., Sasmito, S. D., Sillanpaa, M. (2020). Mangrove Blue Carbon in The Face of Deforestation, Climate Change, and Restoration. Annual Plant Reviews, 3(3), 427-456. https://doi.org/10.1002/9781119312994.apr0752
  7. Hidayah, Z., Rachman, H. A., As-Syakur, A. R. (2022). Mapping of Mangrove Forest and Carbon Stock Estimation of East Coast Surabaya, Indonesia. Biodiversitas, 23(9), 4826-2837. https://doi.org/10.13057/biodiv/d230951
  8. Jennerjahn, T. C., Gilman, E., Krauss, K. W., Lacerda, L. D., Nordhaus, I., Wolanski, E. (2017). Mangrove Ecosystem: A Global Biogeographic Perspective: Chapter Mangrove Ecosystems Under Climate Change. Springer, 211-244. https://doi.org/10.1007/978-3-319-62206-4_7
  9. Jin, X., Song, K., Du, J., Liu, H., Wen, Z. (2017). Comparison of Different Satellite Bands and Vegetation Indices for Estimation of Soil Organic Matter Based on Simulated Spectral Configuration. Agricultural and Forest Meteorology, 244-245, 57-71. https://doi.org/10.1016/j.agrformet.2017.05.018
  10. Kauffman, J.B. and Donato, D.C. (2012) Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests. Working Paper 86, CIFOR, Bogor
  11. Matiza, C., Mutanga, O., Odindi, J., Mngadi, M. (2024). The Utility of Planetscope Spectral Data in Quantifying Above-Ground Carbon Stocks in an Urban Reforested Landscape. Ecological Informatics, 80. https://doi.org/10.1016/j.ecoinf.2024.102472
  12. Munyati, C. (2022). Detecting the Distribution of Grass Aboveground Biomass on A Rangeland Using Sentinel-2 MSI Vegetation Indices. Advances in Space Research, 69(2), 1130-1145. https://doi.org/10.1016/j.asr.2021.10.048
  13. Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., Kurnianto, S. (2015). The Potential of Indonesian Mangrove Forests for Global Climate Change Mitigation. Nature Climate Change, 5, 1089-1092. https://doi.org/10.1038/nclimate2734
  14. Murdiyarso, D., Krisnawati, H., Adinugroho, W. C., Sasmito, S. D. (2023). Deriving Emission Factors for Mangrove Blue Carbon Ecosystem in Indonesia. Carbon Balance and Management, 18(12). https://doi.org/10.1186/s13021-023-00233-1
  15. Neyns, R., Efthymiadis, K., Libin, P., Canters, F. (2024). Fusion of Multi-Temporal PlanetScope Data and Very High-Resolution Aerial Imagery for Urban Tree Species Mapping. Urban Forestry & Urban Greening, 99. https://doi.org/10.1016/j.ufug.2024.128410
  16. Nursinar, S., Yapanto, L. M., Didipu F. (2023). Survival of Mangrove Propagules Types of Rhizophora Apiculata with Different Media. Advances in Water Science, 32(2)
  17. Pham, T. D., Yokoya, N., Nguyen, T. T. T., Le, N. N., Ha, N .T., Xia, J., Takeuchi, W., Pham, T. D. (2020). Improvement of Mangrove Soil Carbon Stocks Estimation in North Vietnam Using Sentinel-2 Data and Machine Learning Approach. GISience & Remote Sensing, 58, 68-87. https://doi.org/10.1080/15481603.2020.1857623
  18. Planet Labs Inc. (2024). Planet Product Image Spesification
  19. Pricillia, C. C., Patria, M. P., Herdiansyah, H. (2021). Environmental Conditions to Support Blue Carbon Storage in Mangrove Forest: A Case Study in Mangrove Forest, Nusa Lembongan, Bali, Indonesia. Biodiversitas, 22(6), 3304-3314. https://doi.org/10.13057/biodiv/d220636
  20. Sarno, Suwignyo, R. A., Dahlan, Z., Munandar, Ridho, M. R., Aminasih, N., Harmida, Armanto, M. E., Wildayana, E. (2017). Short Communication: The Phenology of Sonneratia alba J. Smith in Berbak and Sembilang National Park, South Sumatra, Indonesia. Biodiversitas, 18(3), 909-915. https://doi.org/10.13057/biodiv/d180307
  21. Trettin, C. C., Dai, Z., Tang, W., Lagomasino, D., Thomas, N., Lee, S. K., Simard, M., Ebanega, M. O., Stoval, A., Fatoyinbo, T. E. (2021). Mangrove Carbon Stocks in Pongara National Park, Gabon. Estuarine, Coastal an Shelf Science, 259. https://doi.org/10.1016/j.ecss.2021.107432
  22. Zhang, Y., Ma, J., Liang, S., Li, X., Liu, J. (2022). A Stacking Ensemble Algorithm for Improving the Biases of Forest Aboveground Biomass Estimations from Multiple Remotely Sensed Datasets. GISience & Remote Sensing, 59, 234-249. https://doi.org/10.1080/15481603.2021.2023842
  23. Zhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Cao, J. (2020). Estimating and Mapping Mangrove Biomass Dynamic Change WorldView-2 Images and Digital Surface Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2123-2134. https://doi.org/10.1109/JSTARS.2020.2989500

Last update:

No citation recorded.

Last update: 2025-10-09 03:33:55

No citation recorded.