skip to main content

Prediksi Muka Air Tanah Perkotaan Menggunakan Hybrid ANFIS-PSO: Studi Kasus Kota Semarang

1Master Program of Environmental Science, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

2Departemen Oseanografi, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia

3Departemen Biologi, Fakultas Sains dan Matematika, Universitas Diponegoro, Indonesia, Indonesia

Received: 15 Feb 2025; Revised: 11 Oct 2025; Accepted: 12 Oct 2025; Available online: 30 Sep 2025; Published: 8 Oct 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Prediksi muka air tanah merupakan hal krusial untuk perencanaan pengelolaan sumber daya air tanah yang berkelanjutan, khususnya di daerah urban seperti Kota Semarang yang rentan terhadap penurunan muka air tanah. Penelitian ini bertujuan mengembangkan model prediksi MAT satu bulan ke depan dengan mengoptimalkan algoritma Adaptive Neuro-Fuzzy Inference System (ANFIS) menggunakan Particle Swarm Optimization (PSO). Data sekunder dari ESDM Jawa Tengah periode Juni 2019 hingga Agustus 2024 dari tujuh sumur pantau dianalisis dengan variabel input muka air tanah bulan sebelumnya (GWL t-1), curah hujan, evapotranspirasi, dan temperatur. Evaluasi kinerja model menggunakan koefisien determinasi (R²) dan Root Mean Square Error (RMSE). Hasilnya menunjukkan akurasi yang bervariasi antar lokasi, dengan R² tertinggi 92,77% (RMSE 19,62%) di SMKN 1 Semarang dan R² terendah 62,71% (RMSE 16,27%) di PT Savana Tirta Makmur. Variasi akurasi ini diduga kuat dipengaruhi oleh karakteristik akuifer dan kondisi lingkungan setempat yang tidak seragam. Secara keseluruhan, model ANFIS-PSO terbukti robust dalam memprediksi fluktuasi muka air tanah non-linier. Model ini dapat dijadikan sebagai alat pendukung keputusan yang berharga bagi para pemangku kebijakan, misalnya untuk memitigasi risiko overdraft air tanah dan menyusun strategi konservasi yang lebih efektif di Kota Semarang.

Fulltext View|Download
Keywords: pemodelan; air tanah; ANFIS-PSO; Kota Semarang

Article Metrics:

  1. Aljarah, I., & Ludwig, S. 2013. A New Approach for Parameter Estimation of Fuzzy Inference Systems Using Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), (hal. 2034–2041)
  2. Alley, W., Reilly, T., & Franke, O. 1999. Sustainability of Ground Water Resources. U.S. Geological Survey Circular
  3. Amanah, T., Putranto, T., & Helmi, M. 2019. Application of cluster analysis and principal component analysis for assessment of groundwater quality - A study in Semarang, Central Java, Indonesia. IOP Comference Series: Earth and Environmental Science
  4. Boo, K. B., El-Shafie, A., Othman, F., Khan, M. H., Birima, A., & Ahmed, A. N. 2024. Groundwater level forecasting with machine learning models: A review. Water Research, 1-18
  5. Cui, F., Al-Sudani, Z. A., Hassan, G. S., Afan, H. A., Ahammed, S. J., & Yaseen, Z. M. 2023. Boosted artificial intelligence model using improved alpha-guided grey wolf for groundwater level prediction: Comparative study and insight for federater learning technology. Journal of Hydrology
  6. Fetter, C. 2001. Applied Hydrogeology. Prentice Hall
  7. Hadi, F., Thapa, R. B., Helmi, M., Hazarika, M. K., Madawalagama, S., & Deshapriya, L. N. 2016. Urban Growth and Land Use/Land Cover Modeling in Semarang, Central Java, Indonesia. Asian Conference on Remote Sensing, ACRS, 2341-2350
  8. Hartoko, A., Wirasatria, A., Helmi, M., & Rochaddi, B. 2008. Aplikasi Teknologi Geomatika Untuk Pemetaan Penurunan Tanah (Land Subsidence) di Pesisir Kota Semarang. Journal of Marine Science, 13-18
  9. Helmi, M., Setiyono, H., Bambang, A. N., & Yusuf, M. 2022. Effect rainfall season on coastal flood in Semarang City, Central, Java, Indonesia. International Journal of Health Sciences, 7584-7595
  10. Hyndman, R., & Athanasopoulos, G. 2021. Forecasting: Principles and Practice
  11. Irnawan, F. D., Hidayah, I., & Nugroho, L. E. 2021. Metode Imputasi pada Data Debit Daerah Aliran Sungai Opak, Provinsi DI Yogyakarta. Jurnal Nasional Teknik Elektro dan Teknologi Informasi, 301-311
  12. Ismanto, A., Wirasatriya, A., Helmi, M., Hartoko, A., & Prayogi, P. 2009. Model sebaran penurunan tanah di wilayah pesisir Semarang. International Journal of Marine Science, 189-196
  13. Jang, J. S. 1993. ANFIS: Adaptive Network Based Fuzzy Inference System. IEEE Transactions on Systems, Man, and Cybernetics, 665-685
  14. Kelly-Fair, M., Gopal, S., Koch, M., Kusumaningrum, H. P., Helmi, M., Khairunnisa, D., & Kaufman, L. 2022. Analysis of Land Use and Land Cover Changes through the Lens of SDGs in Semarang, Indonesia. Sustainability
  15. Kennedy, J., & Eberhart, R. 1995. Particle Swarm Optimization. IEEE International Conference on Neural Networks, 1942-1948
  16. Koch, M., Gaber, A., Darwish, N., Bateman, J., Gopal, S., & Helmi, M. 2019. Estimating land subsidence in relation to urban expansion in Semarang city, Indonesia, using InSAR and optical change detection methods. IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, 9686-9689
  17. Lima, F. T., & Souza, V. M. 2023. A Large Comparison of Normalization Methods on Time Series. Big Data Research, 1-15
  18. Marfai, M., & King, L. 2008. Potential vulnerability implications of coastal inundation due to sea level rise for the coastal zone of Semarang city, Indonesia. Environmental Geology, 1235-1245
  19. Memon, S. M., Wamala, R., & Kabano, I. H. 2023. A comparison of imputation methods for categorical data. Informatics in Medicine Unlocked, 1-9
  20. Navale, V., & Mhaske, S. 2023. Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) model for Forecasting Groundwater Level in the Pravara River Basin. Modeling Earth Systems and Environment, 2663-2676
  21. Nayak, P. C., Sudheer, K. P., & Rangan, D. 2005. Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrological Processes, 955-968
  22. Olsson, A. E. 2011. Particle Swarm Optimization: Theory, Techniques and Applications. New York: Nova Science Publishers
  23. Samani, S., Vadiati, M., Azizi, F., Zamani, E., & Kisi, O. 2022. Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorogical Components. Water Resources Management, 3627-3647
  24. Shumway, R., & Stoffer, D. 2017. Time Series Analysis and Its Applications: With R Examples. Springer
  25. Suni, Y. P., & Legono, D. 2021. Manajemen Sumber Daya Air Terpadu dalam Skala Global, Nasional, dan Regional. Jurnal Teknik Sipil, 77-88
  26. Zhang, D., & Chen, T. 2024. Scikit-ANFIS: A Scikit-Learn Compatible Python Implementation for Adaptive Neuro-Fuzzy Interference System. International Journal of Fuzzy System, 2039-2057

Last update:

No citation recorded.

Last update: 2025-10-20 19:22:56

No citation recorded.