skip to main content

Pengaruh pemberian buah naga merah, jambu biji merah, dan kombinasinya terhadap kapasitas antioksidan total dan kadar malondealdehid pada remaja perokok

*Mohammad Zainul Ma'arif orcid  -  Departemen Ilmu Gizi, Pascasarjana, Universitas Sebelas Maret, Indonesia
Suradi Suradi  -  Departemen Kesehatan Masyarakat, Fakultas Kedokteran, Universitas Sebelas Maret, Indonesia
Sugiarto Sugiarto  -  Departemen Ilmu Gizi, Pascasarjana, Universitas Sebelas Maret, Indonesia
Received: 6 Jul 2020; Published: 18 Dec 2020.

Citation Format:
Abstract

Background: Smoking habits enhance free radical in the body, which oxidize lipids to form malondialdehyde. One group that is vulnerable to smoking is adolescents. Red dragon fruit and red guava have the possibility as functional foods due to their vitamin and phytochemical content, which have antioxidant effects. This is an opportunity to prevent oxidative stress among adolescent smokers.

Objectives: This study aimed to analyze the effect of red dragon fruit, red guava, and its combination to total antioxidant capacity (TAC) and malondialdehyde (MDA) levels among adolescent mild smokers.

Methods: This research was an experimental study with a randomized pre-test and post-test control group design. Forty-eight subjects of male adolescent aged 16-17 years with mild smoking habits were divided into four groups: the control group (K), the intervention group with 200 grams of red dragon fruit (P1), 200 grams of red guava (P2), and the combination of both (100 grams red dragon fruit + 100 grams red guava) (P3), for 14 days. TAC examination used the DPPH method and MDA levels using the TBARS method were measured before and after the intervention.

Results: After 14 days of intervention, the mean TAC was changed by -0,10±0,76 in the K group, 0,97±1,62 in the P1 group, 0,74±1,39 in the P2 group, and 0,74±1,29 in the P3 group. But the changes of TAC in all intervention groups were not significantly different from the control group (p>0,05). The mean MDA level changed by 0,229±0,371 in the K group, decreased by -0,654±0,922 in the P1 group, -0,592±0,818 in the P2 group, and -1,166±0,670 in the P3 group. The mean difference of the MDA level in all intervention groups was significantly different from the control group (p<0,05).

Conclusion: Consumption of red dragon fruit, red guava, or a combination of red dragon fruit and red guava can reduce malondialdehyde levels significantly among male adolescent mild smokers. Whereas the total antioxidant capacity was changed but not significant.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
03 Instrumen penelitian
Subject
Type Research Instrument
  Download (184KB)    Indexing metadata
 Research Instrument
02 Form persetujuan
Subject
Type Research Instrument
  Download (489KB)    Indexing metadata
 Research Instrument
01 Cover letter
Subject
Type Research Instrument
  Download (109KB)    Indexing metadata
Keywords: malondialdehyde; mild smokers; red dragon fruit; red guava; total antioxidant capacity

Article Metrics:

  1. World Health Organization (WHO). WHO urges more countries to require large, graphic health warnings on tobacco packaging: the WHO report on the global tobacco epidemic, 2011 examines anti-tobacco massmedia campaigns. Cent Eur J Public Health. 2011;19(3):133-51
  2. World Health Organization (WHO). WHO Global Report on Trends in Prevalence of Tobacco Smoking 2015. Geneva: WHO Library Catalogue. 2015
  3. World Health Organization (WHO). Global Youth Tobacco Survey (GYTS): Indonesia report, 2014. New Delhi: WHO-SEARO. 2015
  4. Kendler KS, Myers J, Damaj MI, Chen X. Early smoking onset and risk for subsequent nicotine dependence: a monozygotic co-twin control study. Am J Psychiatry. 2013;170(4):408-13
  5. Centers for Disease Control and Prevention (CDC). How tobacco smoke causes disease: The biology and behavioral basis for smoking-attributable disease: A report of the surgeon general. Atlanta (GA): Centers for Disease Control and Prevention (US). 2010
  6. Zhao J, and Hopke PK. Concentration of reactive oxygen species (ros) in mainstream and sidestream cigarette smoke. Aerosol Sci Tech. 2012;46(2):191-7
  7. Lymperaki E, Makedou K, Iliadis S, Vagdatli E. Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia. 2015; 19(4):293-7
  8. Jaggi S, and Yadav AS. Increased serum malondialdehyde levels among cigarette smokers. Pharma Innovation. 2015;4(4):94-6
  9. Bello HA, Dandare A, Danmaliki GI. Effects of cigarette smoking on lipid peroxidation ands erum antioxidant vitamins. IOSR-JPBS. 2017;12(2):40-4
  10. Kashinakunti SV, Kollur P, Kallaganada GS, Rangappa M, Ingin JB. Comparative study of serum MDA and vitamin C levels in non-smokers, chronic smokers and chronic smokers with acute myocardial infarction in men. J Res Med Sci. 2011;16(8):993-8
  11. Nagaraj, Kumar SD, Paunipagar PV. Study of serum malondialdehyde and vitamin c in smokers. J Sci Innov Res. 2014;3(6):569-71
  12. Lymperaki E, Makedou K, Iliadis S, Vagdatli E. Effects of acute cigarette smoking on total blood count and markers of oxidative stress in active and passive smokers. Hippokratia. 2015;19(4):293-7
  13. Bakhtiari S, Azimi S, Mehdipour M, Amini S, Elmi Z, Namazi Z. Effect of Cigarette Smoke on Salivary Total Antioxidant Capacity. J Dent Res Dent Clin Dent Prospects. 2015;9(4):281-4
  14. Ugochukwu OBIL, Anyadike N, Okaforchidimma, Dioka CE, Meludu SC. Evaluation of total antioxidant status, superoxide dismutase and malondialdehyde in apparently healthy active tobacco smokers in Nnewi Metropolis, SouthEast, Nigeria. JSIR. 2017;6(3):105-12
  15. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19
  16. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26
  17. Kim H, Choi HK, Moon JY, Kim YS, Mosaddik A, Cho SK. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J Food Sci. 2011;76(1):C38-45
  18. Recuenco MC, Lacsamana MS, Hurtada WA, Sabularse VC. Total phenolic and total flavonoid contents of selected fruits in the philippines. Phil J Sci. 2016;145(3):275-81
  19. Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I. Antioxidant properties of catechins: comparison with other antioxidants. Food Chem. 2018;241:480-92
  20. Wong YM, and Siow LF. Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. J Food Sci Technol. 2015;52(5):3086-92
  21. Naderi N, Ghazali HM, Hussin ASM, Amid M, Manap MYA. Characterization and quantification of dragon fruit (Hylocereus polyrhizus) betacyanin pigments extracted by two procedures. Pertanika J Trop agric Sci. 2012;35(1):33-40
  22. Woo KK, Ngou FH, Ngo LS, Soong WK, Tang PY. Stability of betalain pigment from red dragon fruit (Hylocereus polyrhizus). Am J Food Technol. 2011;6(2):140-8
  23. Kumari N, Gautam S, Ashutosh C. Psidium guajava a fruit or medicine - an overview. Pharma Innovation. 2013;2(8):63-7
  24. Lima GPP, Vianello F, Corrêa CR, da Silva Campos RA, Borguini MG. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr Sci. 2014;5(11):1065-82
  25. Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013;21(2):143-52
  26. Dai J, and Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules. 2010;15(10):7313-52
  27. Brewer MS. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Compr Rev Food Saf. 2011;10(4):221-47
  28. Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules. 2009;14:2202-11
  29. Anand-Swarup KR, Sattar MA, Abdullah NA, Abdulla MH, Salman IM, Rathore HA, et al. Effect of dragon fruit extract on oxidative stress and aortic stiffness in streptozotocin-induced diabetes in rats. Pharmacognosy Res. 2010;2(1):31-5
  30. Hakim ALR, Ambardini RL, Nugroho WA, Burhaein E. Dragon fruit giving effect against malondealdehıde (MDA) levels in muay thaı athletes with hıgh intensıty interval traınıng (HIIT) method. Journal of Education, Health and Sport. 2018;8(10):190-8
  31. Winara W, Rumini R, Nasuka N. Pengaruh pemberian jus jambu biji merah dan denyut nadi sub-maksimal terhadap kadar MDA (Malondialdehyde) pada SSB Garuda Bintang Sumatera Utara. Journal of Physical Education and Sports. 2017;6(1):95-100
  32. Thadeus MS, Fauziah C, Zulfa F, Anisah A. The Effect of Red Dragon Fruit Extract (Hylocereus Polyrhizus) on Membrane Lipid Peroxidation and Liver Tissue Damage Triggered by Hyperlipidemia in White Rats (Rattus Norvegicus). AHSR. 2019;13:187-95
  33. Panjaitan P, Annisa N, Rijai L. Observasi klinik perubahan kadar malondealdehid pada perokok dan non-perokok dengan pemberian minuman antioksidan jus buah naga merah (H.Polyrhizus). Proceeding of Mulawarman Pharmaceuticals Conference. 2017;6:54-7
  34. Prior RL, Gu L, Wu X, Jacob RA, Sotoudeh G, Kader AA, Cook RA. Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr. 2007;26:170-81
  35. Kementerian Kesehatan Republik Indonesia. Perilaku Berisiko Kesehatan pada Pelajar SMP dan SMA di Indonesia. Badan Litbangkes Kementerian Kesehatan Republik Indonesia. Jakarta; 2015
  36. Chrzczanowicz J, Gawron A, Zwolinska A, de Graft-Johnson J, Krajewski W, Krol M, et al. Simple method for determining human serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity - possible application in clinical studies on dietary antioxidants. Clin Chem Lab Med. 2008;46(3):342-9
  37. Buege JA, and Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302-10
  38. Perez-Jimenez J, Serrano J, Tabernero M, Arranz S, Diaz-Rubio ME, Garcia-Diz L, et al. Bioavailability of phenolic antioxidants associated with dietary fiber: Plasma antioxidant capacity after acute and long-term intake in humans. Plant Foods Hum Nutr. 2009;64:102-7
  39. Damayanthi E, Kustiyah L, Khalid M, Farizal H. Antioxidant activity rice bran higher than tomato juice and the decreasing of total antioxidant activity serum after high antioxidant beverage intervention. Journal of Nutrition and Food. 2010;5(3):205-10
  40. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111(10):5944-72
  41. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;360438
  42. Thadeus MS, Fauziah C, Zulfa F, Anisah A. The effect of red dragon fruit extract (hylocereus polyrhizus) on membrane lipid peroxidation and liver tissue damage triggered by hyperlipidemia in white rats (Rattus Norvegicus). AHSR. 2019;13:187-95
  43. Herdiani N, and Putri EBP. Pengaruh ekstrak buah naga merah terhadap kadar mda tikus yang diberi paparan asap rokok. IJOBB. 2018;2(1):1-7
  44. Maigoda TC, Sulaeman A, Setiawan B, Wibawan IWT. Effects of red dragon fruits (Hylocereus polyrhizus) powder and swimming exercise on inflammation, oxidative stress markers, and physical fitness in male obesity rats (Sprague dawley). IJSBAR. 2016;25(1):123-41
  45. Sinaga FA, Hasibuan R, Risfandi M. Decrease of malondialdehyde levels by consuming red guava fruit juice in maximal physical activity. IJSR. 2017;7(11):449-51
  46. Maryanto S. The effects of red guava (Psidium guajava L) fruits on lipid peroxidation in hypercholesterolemic rats. Basic Res J Med Clin Sci. 2013;2(11):116-21
  47. Suwimol S, Pimpanit L, Aporn M, Pichita S, Ratiyaporn S, Wiroj J. Impact of fruit and vegetables on oxidative status and lipid profiles in healthy individuals. Food and Public Health. 2012;2(4):113-8
  48. Tesoriere L, Allegra M, Gentile C, Livrea MA. Betacyanins as phenol antioxidants. Chemistry and mechanistic aspects of the lipoperoxyl radical-scavenging activity in solution and liposomes. Free Radic Res. 2009;43:706-17
  49. Schmidt B, Ribnicky DM, Poulev A, Logendra S, Cefalu WT, Raskin I. A natural history of botanical therapeutics. Metab. 2008;57(7 Suppl 1):S3-9

Last update: 2021-08-04 08:39:09

No citation recorded.

Last update: 2021-08-04 08:39:09

No citation recorded.