skip to main content

The effect of additional protein, phosphatidylcholine, phosphatidylserine, and inulin on S100β levels of acute ischemic stroke patients at Dr. Kariadi Central Hospital, Semarang

11Nutrition Department, Medical Faculty, Diponegoro University, Indonesia

2Medical Faculty, Diponegoro University, Indonesia

3Public Health Nutrition Department, Public Health Faculty, Diponegoro University, Indonesia

4 Neurology Department, Medical Faculty, Diponegoro University, Indonesia

5 Dr. Kariadi Hospital, Indonesia

View all affiliations
Received: 26 Aug 2020; Published: 30 Jun 2021.

Citation Format:

Background: The brain releases biochemical substrates, such as S100β protein, into circulation in response to ischemic conditions as a sign of damage in nerve cells and disruption of the blood-brain barrier’s integrity. Thrombolytic therapy has led to the development of many neuroprotective therapies such as protein, phosphatidylcholine, phosphatidylserine, and inulin, which can be added to food products. Protein, phospholipids, and inulin, have a neuroprotective impact on nerve cells in the brain and blood-brain barrier.

Objective: To prove the effect of protein, phosphatidylcholine, phosphatidylserine, and inulin on S100β levels and clinical outcomes in patients with acute ischemic stroke.

Materials and Methods: This study was done in a single-blind RCT. Eighteen ischemic stroke patients were randomly divided into nine subjects for the intervention group and nine subjects for the control group. The Control group received 250 ml conventional formula milk (11.8 g protein) 3 times/day. The intervention group received 250 mL commercial milk 3 rimes/day which contained 15 g protein with 128 mg phosphatidylcholine, 32 mg phosphatidylserine, and 3 g inulin. All of the groups were given hospital-standard therapy for ischemic stroke. S100β levels were measured at pre and post-intervention.

Results: Pre and post S100β levels in intervention and the control group did not show any statistically difference (p = 0.777 and p = 0.096), but there was a trend of decreasing  levels of S100β in the intervention group (-24.6 + 252.0 pg/mL) versus control group (135.8 + 216.2 pg/mL).

Conclusions: The addition of protein, phosphatidylcholine, phosphatidylserine, and inulin did not have a significant effect on S100β levels.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Results
The Effect of Additional Protein, Phosphatidylcholine, Phosphatidylserine, and Inulin on S100β Levels of Acute Ischemic Stroke Patients at Dr. Kariadi Central Hospital, Semarang
Subject protein; phosphatidylcholine; phosphatidylserine; inulin; S100β
Type Research Results
  View (386KB)    Indexing metadata
Keywords: Protein; Phosphatidylcholine; Phosphatidylserine; Inulin; S100β; Stroke

Article Metrics:

  1. Xing C, Arai K, Lo EH, Hommel M. Pathophysiologic cascades in ischemic stroke. Int J Stroke. 2012;7(5):378–85
  2. Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, et al. Pathophysiology and biomarkers in acute ischemic stroke - A review. Trop J Pharm Res. 2013;12(6):1097–105
  3. Rezaei O, Pakdaman H, Gharehgozli K, Simani L, Vahedian-Azimi A, Asaadi S, et al. S100 B: A new concept in neurocritical care. Iran J Neurol. 2017;16(2):83–9
  4. Secades JJ. Citicoline: pharmacological and clinical review, 2016 update. Rev Neurol. 2016;63(S03): S1–73
  5. Álvarez-Sabín J, Román GC. The role of citicoline in neuroprotection and neuro repair in ischemic stroke. Brain Sci. 2013;3:1395–414
  6. Kadry H, Noorani B, Cucullo L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS [Internet]. 2020;17(1):1–24. Available from:
  7. Kasim VN, Pateda SM, Hadju V, Jafar N. Suplementasi ekstrak albumin ikan gabus terhadap status gizi dan imunitas pasien stroke. J Gizi Klin Indones. 2017;13(3):91
  8. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, et al. Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci. 2016;36(28):7428–40
  9. Hennezel E, Abubucker S, Murphy LO, Cullen TW. Total Lipopolysaccharide from the. MBio. 2017;2(6):1–12
  10. Hotamisligil GS. Inflammation and metabolic disorders. 2019;7121(December):1–17
  11. Li H, Li H, Zhang X, Zhang X, Pan D, Pan D, et al. Dysbiosis characteristics of gut microbiota in cerebral infarction patients. Transl Neurosci. 2020;11(1):124–33
  12. Overgaard K. The effects of citicoline on acute ischemic stroke: A review. J Stroke Cerebrovasc Dis. 2014;23(7):1764–9
  13. Adibhatla RM. Citicoline in stroke and TBI clinical trials. Nat Rev Neurol. 2013;9(3):173
  14. Presley B. Penatalaksanaan Farmakologi Stroke Iskemik Akut. Buletin Rasional [Internet]. 2013;12(1):6–8. Available from: Vol 12 No 1.pdf
  15. Lansberg MG, O’Donnell MJ, Khatri P, Lang ES, Nguyen-Huynh MN, Schwartz NE, et al. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e601S-e636S
  16. Jauch EC, Saver JL, Adams HP, Bruno A, Connors JJB, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(3):870–947
  17. Sahota P, Savitz SI. Investigational Therapies for Ischemic Stroke: Neuroprotection and Neuro recovery. Neurotherapeutics. 2011;8(3):434–51
  18. Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G. The effects of cow-milk protein supplementation in the elderly population: Systematic review and narrative synthesis. Nutrients. 2020;12(9):1–26
  19. Patel S. Functional food relevance of whey protein: A review of recent findings and scopes ahead. J Funct Foods [Internet]. 2015;19:308–19. Available from:
  20. Mitchell CJ, McGregor RA, D’Souza RF, Thorstensen EB, Markworth JF, Fanning AC, et al. Consumption of milk protein or whey protein results in a similar increase in muscle protein synthesis in middle-aged men. Nutrients. 2015;7(10):8685–99
  21. Birkeland E, Gharagozlian S, Birkeland KI, Valeur J, Måge I, Rud I, et al. Prebiotic effect of inulin-type fructans on faecal microbiota and short-chain fatty acids in type 2 diabetes: a randomized controlled trial. Eur J Nutr [Internet]. 2020;59(7):3325–38. Available from:
  22. Shoaib M, Shehzad A, Omar M, Rakha A, Raza H, Sharif HR, et al. Inulin: Properties, health benefits, and food applications. Carbohydr Polym [Internet]. 2016;147(October 2017):444–54. Available from:
  23. Sherwin E, Sandhu K V., Dinan TG, Cryan JF. May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut-Brain Axis in Neuropsychiatry. CNS Drugs. 2016;30(11):1019–41
  24. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):1–12
  25. Erny D, De Angelis ALH, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77
  26. Arbayanto DN. Penyembuhan Stroke Perlu Kecepatan Waktu [Internet]. Ruang Publik. 2018. Available from:
  27. Ghani L, Mihardja LK, Delima. Faktor Risiko Dominan Penderita Stroke di Indonesia. Bul Penelit Kesehat. 2016;44(1):49–58
  28. Laily SR. Hubungan Karakteristik Penderita dan Hipertensi dengan Kejadian Stroke Iskemik. J Berk Epidemologi. 2017;5(1):95–106
  29. Iskandar A, Hadisaputro S, Pudjonarko D, Suhartono, Pramukarso DT. Gaya Hidup Yang Berpengaruh Terhadap Kejadian Stroke Iskemik Pada Usia Kurang Dari 45 Tahun (Studi Di BLUD RSUD Cut Nyak Dhien Meulaboh Kabupaten Aceh Barat Provinsi Aceh). J Epidemiol Kesehat Komunitas. 2018;3(2):54–62
  30. Junaidi I. Stroke : Waspadai Ancamannya. Yogyakarta: Andi; 2011
  31. Mohr J, Wolf P, Moskowitz M, Mayberg M, Kummer R Von. Stroke: Pathophysiology, Diagnosis, and Management. 5th ed. Grotta J, editor. Philadelphia: Elsevier Saunders; 2011. 198–218 p
  32. Matsuo R, Ago T, Kiyuna F, Sato N, Nakamura K, Kuroda J, et al. Smoking status and functional outcomes after acute ischemic stroke. Stroke. 2020;846–52
  33. Lotosh NG, Savel’Eva EK, Selishcheva AA, Savel’Ev S V. Autoantibodies to neuron-specific proteins S100, GFAP, MBP, and NGF in the serum of rats with streptozotocin-induced diabetes. Bull Exp Biol Med. 2013;155(1):48–51
  34. Kheirouri S, Ebrahimi E, Alizadeh M. Association of S100B Serum Levels with Metabolic Syndrome and its Components. 2018;31(4):201–6
  35. Dávalos A, Alvarez-Sabín J, Castillo J, Díez-Tejedor E, Ferro J, Martínez-Vila E, et al. Citicoline in the treatment of acute ischaemic stroke: An international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet [Internet]. 2012;380(9839):349–57. Available from:
  36. Woods SD, Flores R, Roberson PK, Lowery JD, Skinner RD, Culp WC. Decreased Serum Levels of S-100B Protein Reflect Successful Treatment Effects in a Rabbit Model of Acute Ischemic Stroke. Open Neurol J. 2011;5(1):55–7
  37. Calcagnile O, Holmén A, Chew M, Undén J. S100B levels are affected by older age but not by alcohol intoxication following mild traumatic brain injury. Scand J Trauma Resusc Emerg Med. 2013;21(1):2–7
  38. Wahyudi R, Hasmono D, Fitrina R, Armal K. Injected Citicoline Improves Impairment and Disability During Acute Phase Treatment in Ischemic Stroke Patients. Folia Medica Indones. 2016;51(4):245
  39. Glade MJ, Smith K. Phosphatidylserine and the human brain. Nutrition [Internet]. 2015;31(6):781–6. Available from:
  40. Setiarto R, Widhyastuti N, Saskiawan I, Safitri R. Pengaruh Variasi Konsentrasi Inulin Pada Proses Fermentasi Oleh L. Acidophilus, L. Bulgaricus Dan S. Thermophillus. Biopropal Ind. 2017;8(1):1–17
  41. Ji M, Li S, Dong Q, Hu W. Impact of an early high-protein diet on neurofunctional recovery in rats with ischemic stroke. Med Sci Monit. 2018;24:2235–43
  42. Jadavji NM, Emmerson JT, MacFarlane AJ, Willmore WG, Smith PD. B-vitamin and choline supplementation increases neuroplasticity and recovery after stroke. Neurobiol Dis. 2017;103:89–100
  43. Hoffman JD, Yanckello LM, Chlipala G, Hammond TC, McCulloch SD, Parikh I, et al. Dietary inulin alters the gut microbiome, enhances systemic metabolism, and reduces neuroinflammation in an APOE4 mouse model. PLoS One. 2019;14(8):1–22
  44. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:1–14
  45. Thelin EP, Nelson DW, Bellander BM. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir (Wien) [Internet]. 2017;159(2):209–25. Available from:
  46. Aquilani R, Sessarego P, Iadarola P, Barbieri A, Boschi F. Nutrition for brain recovery after ischemic stroke: An added value to rehabilitation. Nutr Clin Pract. 2011;26(3):339–45
  47. Richter Y, Herzog Y, Lifshitz Y, Hayun R, Zchut S. The effect of soybean-derived phosphatidylserine on cognitive performance in elderly with subjective memory complaints: A pilot study. Clin Interv Aging. 2013;8:557–63
  48. Martynov MY, Boiko AN, Kamchatnov PR, Kabanov AA, Yasamanova AN, Shchukin IA, et al. Neuroprotective therapy with citicoline (Ceraxon) in patients with ischemic stroke. Neurosci Behav Physiol. 2013;43(6):706–11
  49. Kato-Kataoka A, Sakai M, Ebina R, Nonaka C, Asano T, Miyamori T. Soybean-derived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J Clin Biochem Nutr. 2010;47(3):246–55

Last update:

No citation recorded.

Last update: 2024-04-18 23:20:21

No citation recorded.