skip to main content

Nanocellulose as a Functional Ingredient in the Management of Metabolic Syndrome: A Review

Department of Nutrition, Universitas Muhammadiyah Semarang, Indonesia

Received: 11 Dec 2020; Published: 2 Dec 2022.

Citation Format:
Abstract

Alternative treatments in the management of metabolic syndrome are required because multiple drugs for individual components was found to have negative side effects on other components. Functional ingredients, particularly fiber, has shown great benefits in improving metabolic syndrome. Nanocellulose is a novel type of fiber, derived from cellulose through various processes that result in a nanoscale fiber with the dimension below 100 nm. Its smaller size brought improvements to the physicochemical properties of cellulose and consequently its biological activities. Nanocellulose appear to exhibit distinct functional activities that affect various processes in the gastrointestinal tract, including interference in lipid and carbohydrate digestion and reinforcement of gut microflora. These properties may ameliorate abdominal obesity, dyslipidemia, hyperglycemia, and high blood pressure through similar mechanisms of both soluble and insoluble fibers. In this review, we first introduce nanocellulose and its particular characteristics that makes it separate from cellulose. With the limited studies available, we try to go in depth into its activity in the gastrointestinal tract followed by the possible implications of those functional properties on health, especially on the components of metabolic syndrome. Lastly, we discuss the potential applications and advantages of incorporating nanocellulose in functional food for the management of metabolic syndrome.

Fulltext View|Download
Keywords: nanocellulose; fiber; metabolic syndrome; functional food

Article Metrics:

  1. Nolan PB, Carrick-Ranson G, Stinear JW, et al. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev Med reports. 2017;7:211-215
  2. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev. 2015;16(1):1-12
  3. Ranasinghe P, Mathangasinghe Y, Jayawardena R, et al. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health. 2017;17(1):101
  4. Sigit FS, Tahapary DL, Trompet S, et al. The prevalence of metabolic syndrome and its association with body fat distribution in middle-aged individuals from Indonesia and the Netherlands: a cross-sectional analysis of two population-based studies. Diabetol Metab Syndr. 2020;12(1):1-11
  5. World Food Programme. An Eating Habit Study: Factors That Could Influence Female Adolesccents to Eat More Fruits and Vegetables.; 2017
  6. Badan Pusat Statistik. Konsumsi Kalori Dan Protein Penduduk Indonesia Dan Provinsi Berdasarkan Susenas September 2016.; 2017
  7. Rask Larsen J, Dima L, Correll CU, et al. The pharmacological management of metabolic syndrome. Expert Rev Clin Pharmacol. 2018;11(4):397-410. doi: 10.1080/17512433.2018.1429910
  8. Culver AL, Ockene IS, Balasubramanian R, et al. Statin Use and Risk of Diabetes Mellitus in Postmenopausal Women in the Women’s Health Initiative. Arch Intern Med. 2012;172(2):144-152. doi: 10.1001/archinternmed.2011.625
  9. Cederberg H, Stančáková A, Yaluri N, et al. Increased risk of diabetes with statin treatment is associated with impaired insulin sensitivity and insulin secretion: a 6 year follow-up study of the METSIM cohort. Diabetologia. 2015;58(5):1109-1117. doi: 10.1007/s00125-015-3528-5
  10. Elbere I, Kalnina I, Silamikelis I, et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS One. 2018;13(9):e0204317
  11. Mohamed S. Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovasular disease. Trends Food Sci Technol. 2014;35(2):114-128
  12. Marinangeli CPF, Jones PJH. Functional food ingredients as adjunctive therapies to pharmacotherapy for treating disorders of metabolic syndrome. Ann Med. 2010;42(5):317-333
  13. Chen J-P, Chen G-C, Wang X-P, et al. Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. Nutrients. 2018;10(1):24
  14. de Carvalho CM, de Paula TP, Viana L V, et al. Plasma glucose and insulin responses after consumption of breakfasts with different sources of soluble fiber in type 2 diabetes patients: A randomized crossover clinical trial. Am J Clin Nutr. 2017;106(5):1238-1245
  15. Karhunen LJ, Juvonen KR, Flander SM, et al. A Psyllium Fiber-Enriched Meal Strongly Attenuates Postprandial Gastrointestinal Peptide Release in Healthy Young Adults. J Nutr. 2010;140(4):737-744. doi: 10.3945/jn.109.115436
  16. Krzysik M, Grajeta H, Prescha A, et al. Effect of cellulose, pectin and chromium (III) on lipid and carbohydrate metabolism in rats. J Trace Elem Med Biol. 2011;25(2):97-102
  17. Raza GS, Putaala H, Hibberd AA, et al. Polydextrose changes the gut microbiome and attenuates fasting triglyceride and cholesterol levels in Western diet fed mice. Sci Rep. 2017;7(1):5294. doi: 10.1038/s41598-017-05259-3
  18. Lambert JE, Parnell JA, Tunnicliffe JM, et al. Consuming yellow pea fiber reduces voluntary energy intake and body fat in overweight/obese adults in a 12-week randomized controlled trial. Clin Nutr. 2017;36(1):126-133. doi: https://doi.org/10.1016/j.clnu.2015.12.016
  19. Adam CL, Thomson LM, Williams PA, et al. Soluble fermentable dietary fibre (pectin) decreases caloric intake, adiposity and lipidaemia in high-fat diet-induced obese rats. PLoS One. 2015;10(10):e0140392
  20. Mohammadi R, Mortazavian AM. Technological aspects of prebiotics in probiotic fermented milks. Food Rev Int. 2011;27(2):192-212
  21. Mudgil D, Barak S, Khatkar BS. Development of functional yoghurt via soluble fiber fortification utilizing enzymatically hydrolyzed guar gum. Food Biosci. 2016;14:28-33
  22. Tomic N, Dojnov B, Miocinovic J, et al. Enrichment of yoghurt with insoluble dietary fiber from triticale–A sensory perspective. LWT. 2017;80:59-66
  23. Koshani R, Madadlou A. A viewpoint on the gastrointestinal fate of cellulose nanocrystals. Trends Food Sci Technol. 2018;71:268-273
  24. Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C. Nanocellulose for industrial use: Cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In: Handbook of Nanomaterials for Industrial Applications. Elsevier; 2018:74-126
  25. Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. Eur Polym J. 2014;59:302-325. doi: https://doi.org/10.1016/j.eurpolymj.2014.07.025
  26. Xue Y, Mou Z, Xiao H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale. 2017;9(39):14758-14781
  27. Serpa A, Velásquez-Cock J, Gañán P, Castro C, Vélez L, Zuluaga R. Vegetable nanocellulose in food science: A review. Food Hydrocoll. 2016;57:178-186
  28. Liu L, Kerr WL, Kong F, Dee DR, Lin M. Influence of nano-fibrillated cellulose (NFC) on starch digestion and glucose absorption. Carbohydr Polym. 2018;196:146-153
  29. DeLoid GM, Sohal IS, Lorente LR, et al. Reducing intestinal digestion and absorption of fat using a nature-derived biopolymer: interference of triglyceride hydrolysis by nanocellulose. ACS Nano. 2018;12(7):6469-6479
  30. Mackie A, Gourcy S, Rigby N, Moffat J, Capron I, Bajka B. The fate of cellulose nanocrystal stabilised emulsions after simulated gastrointestinal digestion and exposure to intestinal mucosa. Nanoscale. 2019;11(6):2991-2998
  31. Nsor-Atindana J, Zhou YX, Saqib MN, et al. Enhancing the prebiotic effect of cellulose biopolymer in the gut by physical structuring via particle size manipulation. Food Res Int. 2020;131:108935
  32. Dubey R, Toh Y-R, Yeh A-I. Enhancing cellulose functionalities by size reduction using media-mill. Sci Rep. 2018;8(1):1-11
  33. Lu H, Gui Y, Guo T, et al. Effect of the particle size of cellulose from sweet potato residues on lipid metabolism and cecal conditions in ovariectomized rats. Food Funct. 2015;6(4):1185-1193
  34. Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. 2015;132(14)
  35. Andrade DRM, Mendonça MH, Helm CV, et al. Assessment of nano cellulose from peach palm residue as potential food additive: part II: preliminary studies. J Food Sci Technol. 2015;52(9):5641-5650
  36. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479-3500
  37. Dhingra D, Michael M, Rajput H, et al. Dietary fibre in foods: a review. J Food Sci Technol. 2012;49(3):255-266. doi: 10.1007/s13197-011-0365-5
  38. Mudgil D, Barak S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol. 2013;61:1-6
  39. Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4(11):3274-3294. doi: 10.1039/C2NR30260H
  40. Isogai T, Saito T, Isogai A. Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose. 2011;18(2):421-431. doi: 10.1007/s10570-010-9484-9
  41. Lin S-P, Loira Calvar I, Catchmark JM, Liu J-R, Demirci A, Cheng K-C. Biosynthesis, production and applications of bacterial cellulose. Cellulose. 2013;20(5):2191-2219. doi: 10.1007/s10570-013-9994-3
  42. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D. Recent advances in bacterial cellulose. Cellulose. 2014;21(1):1-30
  43. Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH. Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Lett. 2018;9(1):70-75
  44. Lu H, Gui Y, Zheng L, Liu X. Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int. 2013;50(1):121-128
  45. DeLoid GM, Cao X, Molina RM, et al. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ Sci Nano. 2019;6(7):2105-2115
  46. Lopes VR, Strømme M, Ferraz N. In Vitro Biological Impact of Nanocellulose Fibers on Human Gut Bacteria and Gastrointestinal Cells. Nanomaterials. 2020;10(6):1159
  47. Kümmerer K, Menz J, Schubert T, Thielemans W. Biodegradability of organic nanoparticles in the aqueous environment. Chemosphere. 2011;82(10):1387-1392
  48. Khoshkava V, Kamal MR. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites. ACS Appl Mater Interfaces. 2014;6(11):8146-8157
  49. Winuprasith T, Suphantharika M. Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocoll. 2015;43:690-699. doi: https://doi.org/10.1016/j.foodhyd.2014.07.027
  50. Qi X, Al‐Ghazzewi FH, Tester RF. Dietary fiber, gastric emptying, and carbohydrate digestion: A mini‐review. Starch‐Stärke. 2018;70(9-10):1700346
  51. Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients. 2010;2(12):1266-1289
  52. Bai L, Lv S, Xiang W, Huan S, McClements DJ, Rojas OJ. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 2. In vitro lipid digestion. Food Hydrocoll. 2019;96:709-716
  53. Liu L, Kong F. In vitro investigation of the influence of nano-fibrillated cellulose on lipid digestion and absorption. Int J Biol Macromol. 2019;139:361-366
  54. Liu L, Kerr WL, Kong F. Characterization of lipid emulsions during in vitro digestion in the presence of three types of nanocellulose. J Colloid Interface Sci. 2019;545:317-329
  55. Winuprasith T, Khomein P, Mitbumrung W, Suphantharika M, Nitithamyong A, McClements DJ. Encapsulation of vitamin D3 in pickering emulsions stabilized by nanofibrillated mangosteen cellulose: Impact on in vitro digestion and bioaccessibility. Food Hydrocoll. 2018;83:153-164
  56. Sarkar A, Li H, Cray D, Boxall S. Composite whey protein–cellulose nanocrystals at oil-water interface: Towards delaying lipid digestion. Food Hydrocoll. 2018;77:436-444
  57. Bertsch P, Isabettini S, Fischer P. Ion-induced hydrogel formation and nematic ordering of nanocrystalline cellulose suspensions. Biomacromolecules. 2017;18(12):4060-4066
  58. Liu L, Kong F. In vitro investigation of the influence of nano-cellulose on starch and milk digestion and mineral adsorption. Int J Biol Macromol. 2019;137:1278-1285
  59. Ahmed F, Sairam S, Urooj A. In vitro hypoglycemic effects of selected dietary fiber sources. J Food Sci Technol. 2011;48(3):285-289. doi: 10.1007/s13197-010-0153-7
  60. Ji N, Liu C, Li M, Sun Q, Xiong L. Interaction of cellulose nanocrystals and amylase: Its influence on enzyme activity and resistant starch content. Food Chem. 2018;245:481-487
  61. Nsor-Atindana J, Goff HD, Liu W, Chen M, Zhong F. The resilience of nanocrystalline cellulose viscosity to simulated digestive processes and its influence on glucose diffusion. Carbohydr Polym. 2018;200:436-445
  62. He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7(1):1-14
  63. Khare S, DeLoid GM, Molina RM, et al. Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NanoImpact. 2020:100216
  64. Wanders AJ, van den Borne JJGC, de Graaf C, et al. Effects of dietary fibre on subjective appetite, energy intake and body weight: a systematic review of randomized controlled trials. Obes Rev. 2011;12(9):724-739
  65. Grube B, Chong P, Lau K, Orzechowski H. A natural fiber complex reduces body weight in the overweight and obese: A double‐blind, randomized, placebo‐controlled study. Obesity. 2013;21(1):58-64
  66. Burini RC, Kano HT, Nakagaki MS, Frenhani PB, McLellan KC. Behavioral factors of abdominal obesity and effects of lifestyle changes with fiber adequacy. Insights Obes Gen Beyond. 2017;1:14-22
  67. Trivedi VR, Satia MC, Deschamps A, et al. Single-blind, placebo controlled randomised clinical study of chitosan for body weight reduction. Nutr J. 2016;15(1):3. doi: 10.1186/s12937-016-0122-8
  68. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32(11):1345-1361
  69. Surampudi P, Enkhmaa B, Anuurad E, Berglund L. Lipid Lowering with Soluble Dietary Fiber. Curr Atheroscler Rep. 2016;18(12):75. doi: 10.1007/s11883-016-0624-z
  70. Naumann S, Schweiggert-Weisz U, Eglmeier J, Haller D, Eisner P. In vitro interactions of dietary fibre enriched food ingredients with primary and secondary bile acids. Nutrients. 2019;11(6):1424
  71. Sangnark A, Noomhorm A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse. Food Chem. 2003;80(2):221-229
  72. Herman-Lara E, Elvira-Torales LI, Rodriguez-Miranda J, et al. Impact of micronized starfruit (Averrhoa carambola L.) fiber concentrate on lipid metabolism in mice. Int J Food Sci Nutr. 2014;65(7):862-867
  73. Zhao Y, Liu J, Hao W, et al. Structure-specific effects of short-chain fatty acids on plasma cholesterol concentration in male syrian hamsters. J Agric Food Chem. 2017;65(50):10984-10992
  74. Alvaro A, Solà R, Rosales R, et al. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life. 2008;60(11):757-764. doi: https://doi.org/10.1002/iub.110
  75. Takano A, Kamiya T, Tomozawa H, et al. Insoluble Fiber in Young Barley Leaf Suppresses the Increment of Postprandial Blood Glucose Level by Increasing the Digesta Viscosity. Gilani AH, ed. Evidence-Based Complement Altern Med. 2013;2013:137871. doi: 10.1155/2013/137871
  76. Müller M, Canfora EE, Blaak EE. Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients. 2018;10(3):275
  77. Shimotoyodome A, Suzuki J, Kumamoto Y, Hase T, Isogai A. Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules. 2011;12(10):3812-3818
  78. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470-512
  79. Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun. 2013;4(1):1-12
  80. Remely M, Aumueller E, Merold C, et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene. 2014;537(1):85-92
  81. Miyamoto J, Kasubuchi M, Nakajima A, Irie J, Itoh H, Kimura I. The role of short-chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens. 2016;25(5):379-383
  82. Marathe CS, Rayner CK, Jones KL, Horowitz M. Glucagon-like peptides 1 and 2 in health and disease: a review. Peptides. 2013;44:75-86. doi: 10.1016/j.peptides.2013.01.014
  83. Chen Y, Lin Y-J, Nagy T, Kong F, Guo TL. Subchronic exposure to cellulose nanofibrils induces nutritional risk by non-specifically reducing the intestinal absorption. Carbohydr Polym. 2020;229:115536
  84. Chen J, Gao D, Yang L, Gao Y. Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Res Int. 2013;54(2):1821-1827
  85. McRorie Jr JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 2: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):90
  86. McRorie Jr JW. Evidence-based approach to fiber supplements and clinically meaningful health benefits, part 1: what to look for and how to recommend an effective fiber therapy. Nutr Today. 2015;50(2):82
  87. Robson A. Tackling obesity: can food processing be a solution rather than a problem? 2012
  88. RoBsoN AA. Food nanotechnology: water is the key to lowering the energy density of processed foods. Nutr Health. 2011;20(3-4):231-236
  89. Mu R, Hong X, Ni Y, et al. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci Technol. 2019;93:136-144
  90. Cui S, Li M, Zhang S, Liu J, Sun Q, Xiong L. Physicochemical properties of maize and sweet potato starches in the presence of cellulose nanocrystals. Food Hydrocoll. 2018;77:220-227
  91. Fuentes-Zaragoza E, Riquelme-Navarrete MJ, Sánchez-Zapata E, Pérez-Álvarez JA. Resistant starch as functional ingredient: A review. Food Res Int. 2010;43(4):931-942. doi: https://doi.org/10.1016/j.foodres.2010.02.004
  92. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011;124(2):411-421
  93. Khan A, Wen Y, Huq T, Ni Y. Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem. 2018;66(1):8-19
  94. Lin KW, Lin HY. Quality Characteristics of Chinese-style Meatball Containing Bacterial Cellulose (Nata). J Food Sci. 2004;69(3):SNQ107-SNQ111. doi: https://doi.org/10.1111/j.1365-2621.2004.tb13378.x
  95. Strom G, Ohgren C, Ankerfors M. Nanocellulose as an additive in food-stuff. 2013. http://www.innventia.com/Documents/%0ARapporter/Innventiareport403.pdf
  96. Sangnark A, Noomhorm A. Chemical, physical and baking properties of dietary fiber prepared from rice straw. Food Res Int. 2004;37(1):66-74. doi: https://doi.org/10.1016/j.foodres.2003.09.007

Last update:

No citation recorded.

Last update: 2024-04-26 23:49:04

No citation recorded.