skip to main content

Psychosocial stress, food preferences, and screen time with nutritional status of women of reproductive age in Sukamulya Village, Tangerang Regency

1Nutrition Science Study Program, Faculty of Health Sciences, Universitas Esa Unggul, Indonesia

2Dietitian Profession Study Program, Faculty of Health Sciences, Universitas Esa Unggul, Indonesia

Received: 8 Mar 2023; Published: 28 Dec 2023.

Citation Format:
Abstract

Background: The increase in age and the pandemic conditions experienced cause Women of Reproductive Age (WRA) to encounter many environmental issues that disturb their psyche, resulting in psychosocial stress. A strategy for dealing with stress is called coping with stress. A higher screen time and high sugar, salt, or fat to deal with stress might change nutritional status.

Objective: This study aims to determine the relationship between psychosocial stress, food preferences, and screen time with the nutritional status of WRA in Sukamulya Village, Tangerang Regency.

Materials and Methods: This research design is cross-sectional and was conducted in March 2022 in Sukamulya Village, Tangerang Regency. The research sample amounted to 55 participants with a purposive sampling technique. The questionnaires used were Psychosocial Stress Assessment Instrument, Food Frequency Questionnaires, and recall screen time. Data analysis using the Chi-Square test.

Results: The majority of participants experienced psychosocial stress (61.8%), food preferences low in sugar, salt, and fat (63.6%), and most of them were in the high screen time category (52.7%). The results showed that there was no relationship between psychosocial stress and food preferences with nutritional status (p > 0.05), but there was a relationship between screen time and nutritional status (p = 0.011).

Conclusion: In this study, food preferences and psychosocial stress were not factors that affected the nutritional status.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Ethical clearance
Subject
Type Research Instrument
  Download (159KB)    Indexing metadata
Keywords: BMI; food preferences; psychosocial stress; screen time; women of reproductive age

Article Metrics:

  1. Murewanhema G. Vaccination hesitancy among women of reproductive age in resource-challenged settings: A cause for public health concern. Pan Afr Med J. 2021;38. DOI: 10.11604/pamj.2021.38.336.28953
  2. World Health Organization. Fact sheets - Malnutrition. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/malnutrition [Last accessed on 2021 May 11]
  3. World Health Organization. Prevalence of underweight/thinness, crude. 2017. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/prevalence-of-underweight-thinness-crude [Last accessed on 2021 May 11]
  4. Kementerian Kesehatan Republik Indonesia. Laporan Nasional Riset Kesehatan Dasar. Kementerian Kesehatan RI. 2018;1–582
  5. Kemenkes RI. Laporan Provinsi Banten RISKESDAS 2018. Badan Penelitian dan Pengembangan Kesehatan. 2018;575
  6. WHO. COVID-19 disrupting mental health services in most countries, WHO survey. 2020. Available from: https://www.who.int/news/item/05-10-2020-covid-19-disrupting-mental-health-services-in-most-countries-who-survey [Last accessed on 2021 October 9]
  7. Nugroho RF, Hanim D, Lanti Y, Dewi R. Psychosocial Stress, Energy and Calcium Intake Are Associated With Nutritional Status of Female Adolescents. J Keperawatan Soedirman. 2018;13(2):92–9. DOI: 10.20884/1.jks.2018.13.2.841
  8. Santos MM dos, Marreiros CS, da Silva HBS, de Oliveira ARS, Cruz KJC. Associations between taste sensitivity, preference for sweet and salty flavours, and nutritional status of adolescents from public schools. Rev Nutr. 2017;30(3):369–75. DOI: 10.1590/1678-98652017000300009
  9. Vilija M, Romualdas M. Unhealthy food in relation to posttraumatic stress symptoms among adolescents. Appetite. 2014;74:86–91. DOI: 10.1016/j.appet.2013.12.002
  10. Maher C, Olds TS, Eisenmann JC, Dollman J. Screen time is more strongly associated than physical activity with overweight and obesity in 9- to 16-year-old Australians. Acta Paediatr Int J Paediatr. 2012;101(11):1170–4. DOI: 10.1111/j.1651-2227.2012.02804.x
  11. Purwanti M, Putri EA, Ilmiawan MI, Wilson, Rozalina. Hubungan tingkat stres dengan indeks massa tubuh mahasiswa pspd fk untan. 2017;3(2):1–10. DOI: 10.30602/JVK.V3I2.116
  12. Zaini M. Hubungan Stress Psikososial Dengan Status Gizi Pada Mahasiswa Kesehatan Di Kabupaten Jember. J Kesehat. 2020;8(1):9. DOI: 10.46815/jkanwvol8.v8i1.38
  13. Tinah. Hubungan Preferensi Makanan Asrama dan Konsumsi Pangan dengan Status Gizi Mahasiswa/I Jurusan Keperawatan Politeknik Kesehatan Medan Tahun 2014. J Mutiara Kesehat Masy. 2017;1(2):31–40
  14. Kadita F, Wijayanti HS. Hubungan Konsumsi Kopi dan Screen-Time dengan Lama Tidur dan Status Gizi Pada Dewasa. J Nutr Coll. 2017;6(4):301–6. DOI: 10.14710/jnc.v6i4.18665
  15. Utami NP, Ayuningtyas CE, Hariyono W. Association of body composition and anthropometric measurement with hypertension among workers in universitas ahmad dahlan. Electron J Gen Med. 2020;17(5):1–6. DOI: 10.29333/ejgm/7880
  16. Apriningtyas B G, Sumarni D, Akhmadi. Hubungan Antara Stres Psikososial Dengan Perilaku Merokok Pada Remaja. J Kebidanan dan Keperawatan. 2013;9(1):1–9
  17. Kementerian Kesehatan RI. Survey Konsumsi Pangan. Jakarta: Kementerian Kesehatan Republik Indonesia; 2018
  18. Sitoayu L, Nuzrina R, Rumana NA. Aplikasi SPSS Untuk Analisis Data Kesehatan Bonus Analisis Data dengan SEM. Pekalongan, Jawa Tengah: PT Nasya Expanding Management (Penerbit NEM - Anggota AKAPI); 2020. 198 pages
  19. Riandi K. X Radiation Dose Monitoring for Adolescent and Adult Patients in Selected Health Care Environment Related Places. J Environ Sci Sustain Dev. 2021;4(1):51–68. DOI: 10.7454/jessd.v4i1.1066
  20. French SA, Tangney CC, Crane MM, Wang Y, Appelhans BM. Nutrition quality of food purchases varies by household income: The SHoPPER study. BMC Public Health. 2019;19(1):1–7. DOI: 10.1186/s12889-019-6546-2
  21. Icenogle G, Steinberg L, Duell N, Chein J, Chang L, Chaudhary N, et al. Adolescents’ Cognitive Capacity Reaches Adult Levels Prior to Their Psychosocial Maturity: Evidence for a “Maturity Gap” in a Multinational, Cross-Sectional Sample. Law Hum Behav. 2019;43(1):69–85. DOI: 10.1037/lhb0000315
  22. Kogler L, Mueller VI, Chang A, Eickhoff SB, Fox PT, Gur RC, et al. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions. Neuroimage. 2016;119:235–51. DOI: 10.1016/j.neuroimage.2015.06.059
  23. Yang T, Yang XY, Yu L, Cottrell RR, Jiang S. Individual and regional association between socioeconomic status and uncertainty stress, and life stress: A representative nationwide study of China. Int J Equity Health. 2017;16(1):1–8. DOI: 10.1186/s12939-017-0618-7
  24. Reiss F. Socioeconomic inequalities and mental health problems in children and adolescents: A systematic review. Soc Sci Med. 2013;90:24–31. DOI: 10.1016/j.socscimed.2013.04.026
  25. Ruiz LD, Zuelch ML, Dimitratos SM, Scherr RE. Adolescent Obesity: Diet Quality, Psychosocial Health, and Cardiometabolic Risk Factors. Nutrients. 2019;20(1):43. DOI: 10.3390/nu12010043
  26. Ariana M. Chao, Ania M. Jastreboff, Marney A. White, Grilo CM, Sinha R. Stress, cortisol, and other appetite-related hormones: Prospective prediction of 6 month changes in food cravings and weight. Obes (Silver Spring). 2017;25(4):713–720. DOI: 10.1002/oby.21790
  27. Su Y, Du S, Yang M, Wu J, Lu H, Wang X. Socioeconomic Determinants of Diet Quality on Overweight and Obesity in Adults Aged 40–59 Years in Inner Mongolia: A Cross-Sectional Study. Int J Public Health. 2021;66(November):1–7. DOI: 10.3389/ijph.2021.1604107
  28. Ardiani K, Nursucahyo E, Prijambodo T, Anas M. Comparison of Weidht Gain in Injectable Contraceptive 1-Month And 3-Month Acceptors at The Independent Midwife Practice Tambaksari Surabaya. Magna Medica. 2020;7(2):63. DOI: 10.26714/magnamed.7.2.2020.63-69
  29. Kamil A, Wilson AR. Sweet taste perceptions and preferences may not be associated with food intakes or obesity. Nutr Today. 2021;56(2):62–9. DOI: 10.1097/NT.0000000000000473
  30. Kwok C, Leung PY, Poon KY, Fung XCC. The Effects of Internet Gaming and Social Media Use On Physical Activity, Sleep, Quality of Life, and Academic Performance among University Students in Hong Kong: A Preliminary Study. Asian J Soc Heal Behav. 2021;4(1):36–44. DOI: 10.4103/shb.shb_81_20
  31. Górnicka M, Hamulka J, Wadolowska L, Kowalkowska J, Kostyra E, Tomaszewska M, et al. Activity–inactivity patterns, screen time, and physical activity: The association with overweight, central obesity and muscle strength in Polish teenagers. report from the ABC of healthy eating study. Int J Environ Res Public Health. 2020;17(21):1–21. DOI: 10.3390/ijerph17217842
  32. Mitchell JA, Rodriguez D, Schmitz KH, Audrain-Mcgovern J. Greater screen time is associated with adolescent obesity: A longitudinal study of the BMI distribution from Ages 14 to 18. Obesity. 2013;21(3):572–5. DOI: 10.1002/oby.20157

Last update:

No citation recorded.

Last update: 2024-05-25 01:40:35

No citation recorded.