skip to main content

Protective roles of the red-dragon fruit peels (Hylocereus costaricensis) against the cigarette-smoke harmful effect in Wistar rats

1Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Indonesia

2Department of Animal Science, Faculty of Animal and Agricultural Science, Universitas Diponegoro, Indonesia

3Natural Product Laboratory, UPT-Laboratorium Terpadu, Universitas Diponegoro, Indonesia

4 Faculty of Medicine, Universitas Diponegoro, Indonesia

View all affiliations
Received: 9 Aug 2023; Accepted: 31 Oct 2023; Published: 28 Dec 2023.

Citation Format:
Abstract

Background:  Many people are exposed to cigarette smoke unintentionally in numerous places worldwide. Cigarette smoke contains carbon monoxide, nicotine, and polycyclic aromatic hydrocarbons, which are toxic and can trigger the production of free radicals in the body.

Objective: To study the impact of cigarette-smoke exposure twice daily for 30 days on 4-5 weeks Rattus norvegicus L. without or with a daily intake of the juice or ethanol extract of the red-dragon fruit peels H. costaricensis.  

Materials and Methods: Twenty-eight 4-5 weeks old male Wistar rats were randomly allocated into Control (not exposed to cigarette-smoke), exposed to cigarette-smoke only (Csmoke), exposed to cigarette-smoke and H. Costaricensis-peel juice (JcHc), exposed to cigarette-smoke and had H. Costaricensis-peel extract (ExHc). Cigarette-smoke exposure was given twice daily. The juice (3g/mL) and extract (3.15g/mL) were given for 30 days ad libitum. Feed and drink intake, body weight, and serum biochemistry (MDA, bilirubin, ALT and AST) were determined. Data were analyzed by ANOVA.

Results: The positive control group with cigarette-smoke exposure (Csmoke) had a significant elevation in serum malondialdehyde (MDA), alanine-transaminase (ALT), and aspartate-transaminase (AST) and drinking water intake (p<0.05) but reduced feed intake and body weight (p<0.05). The JcHc and ExHc groups had reduced serum MDA, ALT, and AST and higher body weight and feed intake than the Csmoke, and the extract had a better reduction than the juice (p<0.05). Furthermore, the extract had a lower biochemical profile than the Control group (p<0.05).

Conclusion: The disturbance in serum MDA, ALT, AST, water and feed intake, and body weight by cigarette smoke was ameliorated by H. costaricensis peel juice or extract daily for 30 days. H. costaricensis peel juice or extract can be used to prevent the adverse effects of cigarette smoke exposure and has the potential to be developed into valuable products.

Fulltext View|Download
Keywords: antioxidants; free radicals; MDA; smoking; tobacco
Funding: No funder

Article Metrics:

  1. TSS Collaborative Group. A cross country comparison of exposure to secondhand smoke among youth. Tob Control 2006; 15 Suppl 2, ii4-19. DOI: 10.1136/tc.2006.015685
  2. Brody DJ, Faust E, Tsai J. Secondhand smoke exposure am ong nonsmoking adults: United States, 2015-2018. NCHS Data Brief. 2021;(396):1-8
  3. Hashemi-Aghdam MR, Shafiee G, Ebrahimi M, Ejtahed HS, Yaseri M, Motlagh ME, et al. Trend of passive smoking and associated factors in Iranian children and adolescents: the CASPIAN studies. BMC Public Health. 2022;22(1):603. DOI: 10.1186/s12889-022-13045-8
  4. Pope CA, Burnett RT, Turner MC, Cohen A, Krewski D, Jerrett M. et al. Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure–response relationships. Environ. Health Perspect. 2011; 119(11):1616-1621. DOI: 10.1289/ehp.1103639
  5. Wang Y, Qi F, Jia X, Lin P, Liu H, Geng M. et al. Mortality and burden of disease attributable to cigarette smoking in Qingdao, China. Int. J. Environ. Res. Public Health. 2016; 13(9):898. DOI: 10.3390/ijerph13090898
  6. GBD 2019 Tobacco Collaborators. Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019. Lancet. 2021;397(10292):2337-2360. DOI: 10.1016/S0140-6736(21)01169-7
  7. May SM, Li JT. Burden of chronic obstructive pulmonary disease: healthcare costs and beyond. Allergy and Asthma Proc. 2015; 36(1):4-10. DOI: 10.2500/aap.2015.36.3812
  8. Talhout R, Schulz T, Florek E, Benthem JV, Wester P, Opperhuizen A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health. 2011; 8(2):613-628. DOI: 10.3390/ijerph8020613
  9. Pasupathi P, Saravanan G, Chinnaswamy P, Bakthavathsalam G. Effect of chronic smoking on lipid peroxidation and antioxidant status in gastric carcinoma patients. Indian J. Gastroenterology. 2009; 28(2):65-67. DOI: 10.1007/s12664-009-0021-4
  10. Padmavathi P, Raghu PS, Reddy VD, Bulle S, Maturu P, et al. Chronic cigarette smoking-induced oxidative/nitrosative stress in human erythrocytes and platelets. Mol. Cell. Toxicol. 2018; 14:27-34. DOI: 10.1007/s13273-018-0004-6
  11. Aspera-Werz RH, Ehnert S, Heid D, Zhu S, Chen T, Barun B, et al. Nicotine and cotinine inhibit catalase and glutathione reductase activity contributing to the impaired osteogenesis of scp-1 cells exposed to cigarette smoke. Oxid. Med. Cell. Longev. 2018(3172480). DOI: 10.1155/2018/3172480
  12. Naresh CK, Rao SM, Shetty PR, Ranganath V, Patil AS, Anu AJ. Salivary antioxidant enzymes and lipid peroxidation product malondialdehyde and sialic acid levels among smokers and non-smokers with chronic periodontitis-A clinico-biochemical study. Family Med. Prim. Care 2019; 8(9):2960-2964. DOI: 10.4103/jfmpc.jfmpc_438_19
  13. Alsalhen KS, Abdalsalam RD. Effect of cigarette smoking on liver functions: a comparative study conducted among smokers and non-smokers male in El-beida City, Libya. Int. Curr. Pharm. J 2014;3(7):291-295. DOI: 10.3329/icpj.v3i7.19077
  14. Kim SA, Shin S. Fruit and vegetable consumption and non-alcoholic fatty liver disease among Korean adults: a prospective cohort study. J. Epidemiol. Community Health. 2020; 74(12):1035-1042. DOI: 10.1136/jech-2020-214568
  15. Lu W, Shi Y, Wang R, Su D, Tang M, Liu Y, et al. Antioxidant activity and healthy benefits of natural pigments in fruits: A Review. Int. J. Mol. Sci. 2021; 22(9):4945. DOI: 10.3390/ijms22094945
  16. Akbari B, Baghaei-Yazdi N, Bahmaie M, Abhari FM. The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors. 2022;48(3):611-633. DOI: 10.1002/bopf.1831
  17. Wu LC, Hsu HW, Chen YC, Chiu CC, Lin YI, Ho JA. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006; 95(2):319-327. DOI: 10.1016/j.foodchem.2005.01.002
  18. Putri NKM, Gunawan IWG, Suarsa IW. Aktivitas antioksidan antosianin dalam ekstrak etanol kulit buah naga super merah (Hylocereus costaricensis) dan analisis kadar totalnya. J. Chem. 2015; 9(2):254-248. DOI: 10.24843/JCHEM.2015.v09.i02.p15
  19. Nurliyana R, Zahir IS, Suleiman KM, Aisyah MR, Rahim KK. Antioxidant study of pulps and peels of dragon fruits: a comparative study. Int. Food Res. J 2010; 17:367-375
  20. Ahmadkhaniha R, Yousefian F, Rastkari N. Impact of smoking on oxidant/antioxidant status and oxidative stress index levels in serum of the university students. J Environ Health Sci Eng. 2021;19(1):1043-1046. DOI: 10.1007/s40201-021-00669-y
  21. Tsuchiya M, Asada A, Kasahara E, Sato EF, Shindo M, Inoue M. Smoking a single cigarette rapidly reduces combined concentrations of nitrate and nitrite and concentrations of antioxidants in plasma. Circulation. 2002;105(10):1155-7. DOI: 10.1161/hc1002.105935
  22. Alberg AJ, Byers P. Cigarette Smoking and Endogenous Antioxidants. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. 2014. DOI: 10.1007/978-3-642-30018-9_124
  23. Clause BT. The Wistar rat as a right choice: establishing mammalian standards and the ideal of a standardized mammal. J Hist Biol. 1993;26:329–349. DOI: 10.1007/BF01061973
  24. Plaskova A, Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front Nutr. 2023;10:1118761. DOI: 10.3389/fnut.2023.1118761
  25. Reeves PG, Nielsen FH, Fahey GC. AIN-93 Purified diets for laboratory rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J Nut. 1993;123(11): 1939-1951. DOI: 10.1093/jn/123.11.1939
  26. Rachma DE, Murwani R, Juniarto AZ. Dietary fresh and boiled mangkokan leaves (Nothopanax scutellarius) normalised body weight, serum lipid profile and malondialdehyde in metabolic syndrome rats. Curr Res Nutr Food Sci. 2020;8(3):889-902. DOI: 10.12944/CRNFSJ.8.3.19
  27. Hanifah IDN, Murwani R, Juniarto AZ. Etlingera elatior (Jack) R.M, Sm Containing Diet Normalizes Some Metabolic Syndrome Markers due to High-fat High-fructose Diet in Wistar Rats. Current Nut Food Sci. 2021;17(7): 727-736. DOI: 10.2174/1573401316666201208101359
  28. Murwani R, Kusumanti E, Naumova EN. Areca catechu L. and Anredera cordifolia (Ten) Steenis supplementation reduces faecal parasites and improves caecal histopathology in laying hens. Int J Vet Sci Med. 2022;10: 52-63. DOI: 10.1080/23144599.2022.2090732
  29. Murwani R, Bayuardhi B. Broilers serum cholesterol and glutamic oxaloacetic transaminase and their relation to antibiotic in feed and medication programs in four broiler producers in Semarang region-Central Java, Indonesia. Int. J. Poult. Sci. 2007;6(4):266–270. DOI: 10.3923/IJPS.2007.266.270
  30. Murwani R, Indriani A, Yuliana I, Wihardani K. Blood biochemical indices and productivity of broilers on diet supplemented with mannan oligosaccharide, baker yeast, or combined baker yeast and noni leaves extracts. Int. J. Poult. Sci. 2011;10(12):990–997. DOI: 10.3923/ijps.2011.991.998
  31. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: a guide for clinicians. Can. Med. Assoc. J. 2005;172(3):367-379. DOI: 10.1503/cmaj.1040752
  32. Center SA. Interpretation of liver enzymes. Vet. Clin. North. Am. Small Anim. Pract. 2007;37(2):297-333. DOI: 10.1016/j.cvsm.2006.11.009
  33. Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology, 2008;134(6):1641-1654. DOI: 10.1053/j.gastro.2008.03.002
  34. 34.Altamiran J, Bataller R. Cigarette smoking and chronic liver diseases. Gut. 2010;59(9):1159-1162. DOI: 10.1136/gut.2008.162453
  35. Marti-Aguado D, Clemente-Sanchez A, Bataller R. Cigarette smoking and liver diseases. J. Hepatol. 2022;77(1):191-205. DOI: 10.1016/j/jhep.2022.01.016
  36. Khaled S, Makled MN, Nader MA. Tiron protects against nicotine-induced lung and liver injury through antioxidant and anti-inflammatory actions in rats in vivo. Life Sci. 2020;1(260). DOI: 10.1016/j.lfs.2020.118426
  37. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: Mechanisms and analysis. Chem. Rev. 2011; 111(10):5944-5972. DOI: 10.1021/cr200084z
  38. Seriner R, Dağlıoğlu K, Coşkun G, Bilgin R. Examination of the effect of curcumin in experimental liver damage created by diethylnitrosamine in Swiss albino mice to superoxide dismutase and catalase activities and glutathione, malondialdehyde, and advanced oxidation protein products levels. Biotechnol. Appl. Biochem. 2022;69(3):1217-1225. DOI: 10.1002/bab.2198
  39. Li L, Yang DC, Chen CH. Metabolic reprogramming: A driver of cigarette smoke-induced inflammatory lung diseases. Free Radic. Biol. and Med. 2021;163:392-401. DOI: 10.1016/j.freeradbiomed.2020.12.438
  40. Premkumar M, Anand AC. Tobacco, cigarettes, and the liver: the smoking gun. J Clin Exp Hepatol. 2021;11(6):700-712. DOI: 10.1016/j.jceh.2021.07.016
  41. Jabbar DK, Abdul-Hassan HK. Cigarette Smoking and Serum Liver Enzymes. J. University of Babylon for Pure and Appl Sci. 2017;25(3):1111-1117
  42. Al-Awaida W, Akash M, Aburubaiha Z, Talib WH, Shehadeh H. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats. Iran J Basic Med Sci. 2014;17(10):740-6. DOI: 10.22038/IJBMS.2014.3445
  43. Napierala M, Olszewski J, Miechowicz I, Jablecka A, Czarnywojtek A, Malinger S, et al. The influence of tobacco smoke exposure on selected markers of oxidative stress, kidneys and liver function in the serum of rats with streptozotocin-induced diabetes. Pharmacol. Reports. 2019;71:1293-1298. DOI: 10.1016/j.pharep.2019.07.012
  44. Patil AS, Ranganath V, Kumar CN, Naik R, John AA, Pharande SB. Evaluation of salivary biomarkers of periodontitis among smokers and non-smokers: A novel study. J Family Med Prim Care. 2020;9(2):1136-1142. DOI: 10.4103/jfmpc.jfmpc_937_19
  45. Jain D, Chaudhary P, Varshney N, Razzak KSB, Verma D, Zahra TRK, et al. Tobacco smoking and liver cancer risk: potential avenues for carcinogenesis. J. Oncol 2021;10(2021):1- 11. DOI: 10.1155/2021/5905357
  46. Kumar S, Mahat RK, Batra J. Evaluation of lipid parameters, liver function test, CRP and MDA (as a marker of lipid peroxidation) in chronic cigarette smokers. Int. J. Biomed and Adv. Res. 2015; 6(02):115-119. DOI: 10.7439/IJBAR.V6I2.1636
  47. Contreras-Zentelle ML, Hernández-Muñoz R. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress? Oxid. Med. Cell. Longev. 2016;(3529149). DOI: 10.1155/2016/3529149
  48. Bešlo D, Golubić N, Rastija V, Agić D, Karnaš M, Šubarić D, Lučić B. Antioxidant Activity, Metabolism, and Bioavailability of Polyphenols in the Diet of Animals. Antioxidants. 2023; 12(6):1141. DOI: 10.3390/antiox12061141
  49. Stromsnes K, Lagzdina R, Olaso-Gonzalez G, Gimeno-Mallench L, Gambini J. Pharmacological Properties of Polyphenols: Bioavailability, Mechanisms of Action, and Biological Effects in In Vitro Studies, Animal Models, and Humans. Biomed. 2021; 9(8):1074. DOI: 10.3390/biomedicines9081074

Last update:

No citation recorded.

Last update: 2024-04-18 15:45:22

No citation recorded.