Purifikasi Alami Sungai Bedadung Hilir Menggunakan Pemodelan Streeter-Phelps

*Agus Dharmawan orcid  -  Program Studi Teknik Pertanian, Indonesia
Sri Wahyuningsih  -  Program Studi Teknik Pertanian, Indonesia
Elida Novita  -  Program Studi Teknik Pertanian, Indonesia
Received: 24 Aug 2019; Published: 5 May 2020.
Open Access Copyright 2020 Agus Dharmawan, Sri Wahyuningsih, Elida Novita
License URL: http://creativecommons.org/licenses/by-nc-sa/4.0

Citation Format:
Article Info
Section: Research Articles
Language: ID
Statistics: 149
Abstract

Latar Belakang: Sungai Bedadung hilir berada di Kabupaten Jember dan merupakan bagian sungai utama di DAS Bedadung. Sungai ini berperan penting bagi kehidupan masyarakat Jember. Kegiatan pengunaan lahan mengubah fungsi sungai menjadi saluran pembuang limbah. Limbah organik masuk ke badan air Sungai Bedadung dan menurunkan oksigen terlarut di perairan.

Metode: Penelitian ini merupakan penelitian deskriptif. Data primer diperoleh dengan melakukan pengukuran debit dan kualitas air (Temperatur, DO dan BOD) sungai di lima titik pantau. Data tersebut kemudian diolah dan digunakan sebagai input variabel persamaan Streeter-Phelps.

Hasil: Berdasarkan penelitian yang dilakukan laju deoksigenasi dan reoksigenasi Sungai Bedadung hilir tertinggi berada pada BDG02 masing-masing 7.997 mg/L.hari dan 19.168 mg/L/hari. Purifikasi alami yang dimodelkan dengan persamaan Streeter-Phelps, pada BDG02 tidak menunjukkan tren penurunan oksigen terlarut, sedangkan empat titik yang lain cenderung turun, mencapai kondisi kritis dan saturai di waktu yang berbeda. Hasil pembuktian model menunjukkan terjadi perbedaan nilai DO model terhadap kondisi lapangan (DO aktual).

Simpulan: Aplikasi pemodelan Streeter-Phelps untuk menganalisis purifikasi alami Sungai Bedadung tidak dapat menunjukkan kesesuaian dengan kondisi lapang, karena proses deoksigenasi dan reoksigenasi di sepanjang sungai selalu berbeda dengan model bergantung pada tambahan pencemar dan hidraulik sungai.

 

ABSTRACT
Title :
Background: Bedadung Downstream, at Jember Region, is the primary river of Bedadung basin. The river has its meaningful advantages to public activities. Change of land uses the stream functions to a big drainage channel. Organic pollutants entrance to the water body and decrease the concentration of dissolved oxygen.

Methods: This research was descriptive. The primary data was obtained by measuring stream flows and water quality (Temperature, DO, and BOD) at five observed stations. The data were processed and used as variable inputs to the Streeter-Phelps equation.

Results: Based on the research conducted, BDG02 had the highest values of deoxygenation and reoxygenation rates, which were 7.997 mg/L.day and 19.168 mg/L.day respectively. DOmod at BDG02 tends to line up, whereas DOmod at four stations had a tendency to declined to critical conditions and rise to the saturation condition at different times. DO sag model was different from actual DO, which measured directly in the water body.

Conclusions: The use of the Streeter-Phelps equation to analyze the self-purification of Bedadung downstream wasn’t appropriate with the field conditions. Deoxygenation and reoxygenation process in the river body was typically difference with the model applied, which were affected by organic pollutants and stream hydraulics.

 
Keywords: DO; purifikasi alami; Streeter-Phelps

Article Metrics:

  1. Badan Pusat Statistik. Kabupaten Jember dalam Angka 2018. Badan Pusat Statistik Kabupaten Jember; 2018.
  2. Mahyudin, Soemarno, dan Praygo T B. Analisis Kualitas Air dan Strategi Pengendalian Pencemaran Air Sungai Metro di Kota Kepanjen Kabupaten Malang 2015. J-PAL, 6(2): 105 – 114.
  3. Agustiningsih, D., Sasongko SB, dan Sudarno. Analisis Kualitas Air dan Strategi Pengendalian Pencemaran Air Sungai Blukar Kabupaten Kendal. Jurnal Presipitasi 2012, 9(2): 64 – 71.
  4. Effendi H. Telaah Kualitas Air bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Kanisius, Yogyakarta; 2003.
  5. Peraturan Pemerintah Republik Indonesia Nomor 82 Tahun 2001. Pengelolaan Kualitas Air dan Pengedalian Pencemaran Air. 14 Desember 2001. Lembaran Republik Indonesia Nomor 4161. Jakarta; 2001.
  6. Peraturan Menteri Negara Lingkungan Hidup Nomor 01 Tahun 2010. Tata Laksana Pengendalian Pencemaran Air. 14 Januari 2010. Jakarta; 2001.
  7. Keputusan Menteri Negara Linkungan Hidup Nomor 110 Tahun 2003. Pedoman Penetapan Daya Tampung Beban Pecemaran Air pada Sumber Air. 27 Juni 2003. Jakarta; 2003.
  8. Streeter H W dan Phelps E B. A Study of The Pollution and Natural Purification of Ohio River. US Public Health Service, Washington DC; 1925.
  9. Arbie, R R, Nugraha, W D, dan Sudarno. Studi Kemampuan Self Purification pada Sungai Progo Ditinjau dari Parameter Organik DO dan BOD (Point Source: Limbah Sentra Tahu Desa Tuksono, Kecamatan Sentolo, Kabupaten Kulon Progo, Provinsi D.I. Yogyakarta). Jurnal Teknik Lingkungan 2015, 4(3): 1 – 15.
  10. Badan Standarisasi Nasional. SNI 8066. Tata Cara Pengukuran Debit Aliran Sungai dan Saluran Terbuka Menggunakan Alat Ukur Arus dan Pelampung. Jakarta; 2015.
  11. Badan Standarisasi Nasional. SNI 6989- 57. Metode Pengambilan Contoh Air Permukaan. Jakarta; 2008.
  12. Rahayu, S., R. H. Widodo, M. van Noordwijk, I. Suryadi, B. Verbist. Monitoring Air di Daerah Aliran Sungai. Bogor; 2009. www.worldagroforestry.esdm.go.id/library/sijh/PP801_KualitasAir. pdf. [15 Februari 2018].
  13. Badan Standarisasi Nasional. SNI 6989- 23: Cara Uji Suhu dengan Termometer. Jakarta; 2008.
  14. Badan Standarisai Nasional. SNI 6989- 14: Cara Uji Oksigen Terlarut dengan Yodometri (Modifikasi Azida). Jakarta; 2008.
  15. Uzoigwe, L O, Maduakolam S C, dan Sameul C. Development of oxygen sag curve: a case study of Otamiri River, Imo State. International Journal of Scientific Engineering and Applied Science (IJSEAS) 2015, 1(4): 371–388.
  16. Marganingrum D, Djuwansah M R, dan Mulyono A. Penilaian Daya Tampung Sungai Jangkok dan Sungai Ancar terhadap Polutan Organik. Jurnal Teknologi Lingkungan 2018, 19(1): 71 – 80.
  17. Metcalf dan Eddy. Wastewater Engineering: Treatment and Reuse, 4th edition. New York: The McGraw-Hill Companies, Inc. New York; 2004.
  18. Lee C C. dan Lin S D. Handbook of Environmental Engineering Calculations, 2nd edition. McGraw-Hill Companies, Inc. New York; 2007.
  19. Hydroscience, Inc. Simplified Mathematical Modelling of Water Quality prepared for the Mitre Corporation and the US Environmental Protection Agency A, Water Programs, Washington, D .C. New Jersey; 1971.
  20. Haider H, Ali W, dan Haydar S. A Review of Dissolved Oxygen and Biochemical Oxygen Demand Models for Large Rivers. Pakistan Journal of Engineering and Applied Science 2013, 12: 127 – 142.
  21. APHA, AWWA, dan WEF. Standard Methods for The Examination of Water and Wastewater 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation. Washington DC; 2005.
  22. O’Connor, D J, dan Dobbins W E. Mechanisms of reaeration of natural streams. American Society of Civil Engineers 1958, (123)1, 641-666.
  23. Haider, H. dan W. Ali. 2010. Development of Dissolved Oxygen Model for a Highly Variable Flow River: A Case Study of Ravi River in Pakistan. Environmental Model Assessment 2010, 15:583–599.
  24. Abowei, J F N. Salinity, Dissolved Oxygen, pH and Surface Water Temperature Conditions in Nkoro River, Niger Delta, Nigeria. Advance Journal of Food Science and Technology 2010, 2(1): 36-40.
  25. Ughbebor, J N, Agunwamba J C, dan Amah V. E. Determination of Reaeration Coefficient K2 for Polluted Stream as A Function of Depth, Hydraulic Radius, Temperatur, and Velocity. Nigerian Journal of Hydrology 2012, 31(2):175 – 180.
  26. Wahyuningsih, S, Novita E, dan Ningtias R. Laju Deoksigenasi dan Laju Reaerasi Sungai Bedadung Segmen Desa Rowotamtu Kecamatan Rambipuji Kabupaten Jember. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem 2019, (7)1: 1 – 7.
  27. Yustiani, Y M, Pradiko H, dan Amrullah R H. The Study of the Deoxygenation Rate of Rangku River Water during Dry Season. International Journal of GEOMATE 2018, (15)47: 164-169.
  28. Astono W. Penetapan Nilai Konstanta Dekomposisi Organik (KD) dan Nilai Konstanta Reaerasi (KA) pada Sungai Ciliwung Hulu – Hilir. Jurnal Ekosains 2010, 2 (1), 40 – 45.
  29. Yustiani, Y M, Wahyuni S, dan Alfian M R. Investigation on the Deoxygenation Rate of Water of Cimanuk River Indramayu Indonesia. Rasayan J. Chem. 2018, 11(2): 475 – 481.
  30. Jouanneau S, Recoules L, Durand M J, Boukabache A, Picot V, Primault Y, Lakel A, Sengelin M, Barillon B, dan Thouand G.. Methods for Assessing Biochemical Oygen Demand (BOD): A Review. Water Research (2013), 49(2014): 62-82.
  31. Sibil R, Berkun M, dan Bekiroglu S. The comparison of different mathematical methods to determine the BOD parameters, a new developed method and impacts of these parameters variations on the design of WWTPs. Applied Mathematical Modelling 2014, 38 641–658.
  32. Oke, I. A., Ismail A, Lukman S, Foghi P U, Adeosun O O, Amele S A, dan Bolorunduro A K. An Improved Solution of First Oder Kinetics for Biochemical Oxygen Demand. Ife Journal of Science 2016, 18(3): 739 752.
  33. Gualtieri C, Gualtieri P, dan Doria G P. Dimensional Analysis of Reaeration Rate in Streams. Journal of Environmental Engineering 2002. 128 (1): 12-18. DOI: 10.1061/(ASCE)0733-9372(2002)128:1(12)
  34. Melching C S and Flores H E. Reaeration Equations Derived from U.S. Geological Survey Database. Journal of Environmental Engineering 1999, 125(5): 407-414.
  35. Jha R dan Singh V P. Analytical Water Quality Model for Biochemical Oxygen Demand Simulation in River Gomti of Ganga Basin, India. KSCE Journal of Civil Engineering 2008, 12(2): 141-147.
  36. Yu L dan Salvador N N B. Modelling Water Quality in Rivers. American Journals of Applied Science 2005, 2(4): 881 - 886.
  37. Longe E O dan Omole D. O. Analysis of Pollution Status of River Illo, Ota, Nigeria. Environmentalist 2008.