skip to main content

Purifikasi Alami Sungai Bedadung Hilir Menggunakan Pemodelan Streeter-Phelps

Sri Wahyuningsih1, 2, 3 Agus Dharmawan1, 2, 3orcid Elida Novita1, 2, 3

1Program Studi Teknik Pertanian, Indonesia

2Fakultas Teknologi Pertanian, Indonesia

3Universitas Jember, Jawa Timur, Indonesia

Open Access Copyright 2020 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-nc-sa/4.0.

Citation Format:
Abstract

Latar Belakang: Sungai Bedadung hilir berada di Kabupaten Jember dan merupakan bagian sungai utama di DAS Bedadung. Sungai ini berperan penting bagi kehidupan masyarakat Jember. Kegiatan pengunaan lahan mengubah fungsi sungai menjadi saluran pembuang limbah. Limbah organik masuk ke badan air Sungai Bedadung dan menurunkan oksigen terlarut di perairan.

Metode: Penelitian ini merupakan penelitian deskriptif. Data primer diperoleh dengan melakukan pengukuran debit dan kualitas air (Temperatur, DO dan BOD) sungai di lima titik pantau. Data tersebut kemudian diolah dan digunakan sebagai input variabel persamaan Streeter-Phelps.

Hasil: Berdasarkan penelitian yang dilakukan laju deoksigenasi dan reoksigenasi Sungai Bedadung hilir tertinggi berada pada BDG02 masing-masing 7.997 mg/L.hari dan 19.168 mg/L/hari. Purifikasi alami yang dimodelkan dengan persamaan Streeter-Phelps, pada BDG02 tidak menunjukkan tren penurunan oksigen terlarut, sedangkan empat titik yang lain cenderung turun, mencapai kondisi kritis dan saturai di waktu yang berbeda. Hasil pembuktian model menunjukkan terjadi perbedaan nilai DO model terhadap kondisi lapangan (DO aktual).

Simpulan: Aplikasi pemodelan Streeter-Phelps untuk menganalisis purifikasi alami Sungai Bedadung tidak dapat menunjukkan kesesuaian dengan kondisi lapang, karena proses deoksigenasi dan reoksigenasi di sepanjang sungai selalu berbeda dengan model bergantung pada tambahan pencemar dan hidraulik sungai.

 

ABSTRACT
Title :
Background: Bedadung Downstream, at Jember Region, is the primary river of Bedadung basin. The river has its meaningful advantages to public activities. Change of land uses the stream functions to a big drainage channel. Organic pollutants entrance to the water body and decrease the concentration of dissolved oxygen.

Methods: This research was descriptive. The primary data was obtained by measuring stream flows and water quality (Temperature, DO, and BOD) at five observed stations. The data were processed and used as variable inputs to the Streeter-Phelps equation.

Results: Based on the research conducted, BDG02 had the highest values of deoxygenation and reoxygenation rates, which were 7.997 mg/L.day and 19.168 mg/L.day respectively. DOmod at BDG02 tends to line up, whereas DOmod at four stations had a tendency to declined to critical conditions and rise to the saturation condition at different times. DO sag model was different from actual DO, which measured directly in the water body.

Conclusions: The use of the Streeter-Phelps equation to analyze the self-purification of Bedadung downstream wasn’t appropriate with the field conditions. Deoxygenation and reoxygenation process in the river body was typically difference with the model applied, which were affected by organic pollutants and stream hydraulics.

 

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (1MB)    Indexing metadata
Keywords: DO; purifikasi alami; Streeter-Phelps

Article Metrics:

  1. Badan Pusat Statistik. Kabupaten Jember dalam Angka 2018. Badan Pusat Statistik Kabupaten Jember; 2018
  2. Mahyudin, Soemarno, Praygo T B. Analisis Kualitas Air dan Strategi Pengendalian Pencemaran Air Sungai Metro di Kota Kepanjen Kabupaten Malang. J-PAL 2015, 6(2): 105 – 114
  3. Rohmah N J, Munandar K, Priantari I. Keanekaragaman dan Kelimpahan Ikan di Sungai Bedadung Wilayah Muara. Biologi, 2016, 1–12. Retrieved from http://repository.unmuhjember.ac.id/1770/
  4. Peraturan Menteri Negara Lingkungan Hidup Nomor 01 Tahun 2010. Tata Laksana Pengendalian Pencemaran Air. 14 Januari 2010. Jakarta; 2010
  5. Keputusan Menteri Negara Linkungan Hidup Nomor 110 Tahun 2003. Pedoman Penetapan Daya Tampung Beban Pecemaran Air pada Sumber Air. 27 Juni 2003. Jakarta; 2003
  6. Arbie R R, Nugraha W D, Sudarno. Studi Kemampuan Self Purification pada Sungai Progo Ditinjau dari Parameter Organik DO dan BOD (Point Source: Limbah Sentra Tahu Desa Tuksono, Kecamatan Sentolo, Kabupaten Kulon Progo, Provinsi D.I. Yogyakarta). Jurnal Teknik Lingkungan 2015, 4(3): 1 – 15
  7. Badan Standarisasi Nasional. SNI 8066: Tata Cara Pengukuran Debit Aliran Sungai dan Saluran Terbuka Menggunakan Alat Ukur Arus dan Pelampung. Jakarta; 2015
  8. Badan Standarisasi Nasional. SNI 6989- 57. Metode Pengambilan Contoh Air Permukaan. Jakarta; 2008
  9. Rahayu S, Widodo R H, van Noordwijk M, Suryadi I, Verbist B. Monitoring Air di Daerah Aliran Sungai. Bogor; 2009. www.worldagroforestry.esdm.go.id/library/sijh/PP801_KualitasAir. pdf. [15 Februari 2018]
  10. Badan Standarisasi Nasional. SNI 6989-23: Cara Uji Suhu dengan Termometer. Jakarta; 2008
  11. Badan Standarisai Nasional. SNI 6989-14: Cara Uji Oksigen Terlarut dengan Yodometri (Modifikasi Azida). Jakarta; 2008
  12. Uzoigwe L O, Maduakolam S C, Samuel C. Development of oxygen sag curve: a case study of Otamiri River, Imo State. International Journal of Scientific Engineering and Applied Science (IJSEAS) 2015, 1(4): 371–388
  13. Marganingrum D, Djuwansah M R, Mulyono A. Penilaian Daya Tampung Sungai Jangkok dan Sungai Ancar terhadap Polutan Organik. Jurnal Teknologi Lingkungan 2018, 19(1): 71 – 80. doi: 10.29122/jtl.v19i1.1789
  14. Streeter H W, Phelps E B. A Study of The Pollution and Natural Purification of Ohio River. US Public Health Service, Washington DC; 1925
  15. Tchobanoglous G, Burton F L, Stensel H D. Wastewater Engineering: Treatment and Reuse, 4th edition. Metcalf and Eddy, Inc. and The McGraw-Hill Companies, Inc. New York; 2003
  16. Lee C C, Lin S D. Handbook of Environmental Engineering Calculations, 2nd edition. McGraw-Hill Companies, Inc. New York; 2007
  17. Hydroscience, Inc. Simplified Mathematical Modelling of Water Quality prepared for the Mitre Corporation and the US Environmental Protection Agency A, Water Programs, Washington, DC. New Jersey; 1971
  18. Haider H, Ali W, Haydar S. A Review of Dissolved Oxygen and Biochemical Oxygen Demand Models for Large Rivers. Pakistan Journal of Engineering and Applied Science 2013, 12: 127 – 142
  19. APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater 22nd ed. American Public Health Association, American Water Works Association, Water Environment Federation. Washington DC; 2005
  20. O’Connor D J, Dobbins W E. Mechanisms of reaeration of natural streams. American Society of Civil Engineers 1958, (123)1, 641-666
  21. Haider H, Ali W. 2010. Development of Dissolved Oxygen Model for a Highly Variable Flow River: A Case Study of Ravi River in Pakistan. Environmental Model Assessment 2010, 15:583–599
  22. Abowei J F N. Salinity, Dissolved Oxygen, pH and Surface Water Temperature Conditions in Nkoro River, Niger Delta, Nigeria. Advance Journal of Food Science and Technology 2010, 2(1): 36-40
  23. Ughbebor J N, Agunwamba J C, Amah V E. Determination of Reaeration Coefficient K2 for Polluted Stream as A Function of Depth, Hydraulic Radius, Temperatur, and Velocity. Nigerian Journal of Hydrology 2012, 31(2):175 – 180
  24. Wahyuningsih S, Novita E, Ningtias R. Laju Deoksigenasi dan Laju Reaerasi Sungai Bedadung Segmen Desa Rowotamtu Kecamatan Rambipuji Kabupaten Jember. Jurnal Ilmiah Rekayasa Pertanian dan Biosistem 2019, (7)1: 1 – 7. doi: 10.29303/jrpb.v7i1.97
  25. Yustiani Y M, Pradiko H, Amrullah R H. The Study of the Deoxygenation Rate of Rangku River Water during Dry Season. International Journal of GEOMATE 2018, (15)47: 164-169
  26. Astono W. Penetapan Nilai Konstanta Dekomposisi Organik (KD) dan Nilai Konstanta Reaerasi (KA) pada Sungai Ciliwung Hulu – Hilir. Jurnal Ekosains 2010, 2 (1), 40 – 45
  27. Yustiani Y M, Wahyuni S, Alfian M R. Investigation on the Deoxygenation Rate of Water of Cimanuk River Indramayu Indonesia. Rasayan J. Chem. 2018, 11(2): 475 – 481. doi: 10.31788/RJC.2018.1121892
  28. Jha R, Singh V P. Analytical Water Quality Model for Biochemical Oxygen Demand Simulation in River Gomti of Ganga Basin, India. KSCE Journal of Civil Engineering 2008, 12(2): 141-147
  29. Longe E O, Omole D. O. Analysis of Pollution Status of River Illo, Ota, Nigeria. Environmentalist 2008
  30. Yu L, Salvador N N B. Modeling Water Quality in Rivers. American Journals of Applied Science 2005, 2(4): 881 - 886

Last update:

No citation recorded.

Last update: 2024-11-16 18:28:34

No citation recorded.