skip to main content

Analisis Kesiapsiagaan Bencana Teknologi dari Pabrik X pada Aspek Proyeksi Zona Bahaya

1Fakultas Kesehatan Masyarakat, Universitas Sriwijaya, Sumatera Selatan 30862, Indonesia

2Fakultas Kesehatan Masyarakat, Universitas Indonesia, Jawa Barat 12345, Indonesia

Open Access Copyright 2023 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Kegagalan teknologi dalam industri X tidak dapat dihindari terutama karena keadaan pabrik X dengan teknologi tua dan bahan kimia sebagai bahan baku produksi yang dapat menimbulkan berbagai bahaya seperti polusi industri hingga kebakaran sehingga diperlukan manajemen bencana teknologi yang strategis. Penelitian ini bertujuan untuk melakukan analisis kesiapsiagaan bencana teknologi dari pabrik X pada aspek proyeksi zona bahaya.

Metode: Penelitian survei dengan rancangan cross-sectional. Sampel penelitian adalah 548 masyarakat yang termasuk dalam area risiko 0-2600 meter dari tangki penyimpanan amonia di sekitar pabrik X yang telah memenuhi kriteria inklusi dan eksklusi penelitian. Data sekunder dari Badan Meteorologi Klimatologi dan Geofisika Stasiun Meteorologi Sultan Mahmud Badaruddin II untuk data meteorologi periode Januari – Desember  digunakan untuk proyeksi zona bahaya. Analisis data menggunakan  ALOHA (Areal Locations of Hazardous Atmospheres) yang di plot ke Google Earth dan Peta Administrasi Kota Palembang.

Hasil: Hasil penelitian disajikan dalam distribusi frekuensi dan proyeksi zona bahaya disajikan dalam gambar yang sudah dipetakan dengan Google Earth. Analisis konsekuensi dari 4 skenario kasus terburuk ketika terjadi rupture tangki amonia, menjelaskan bahwa area risiko rupture di bawah tangki (skenario 2) 3 kali lebih luas dibanding rupture di atas tangki (skenario 1) untuk ukuran lubang diameter 1 cm. Area risiko heavy gas (skenario 4) 2 kali lebih luas dibanding dengan hasil prediksi model gaussian (skenario 3).

Simpulan: Penyusunan manajemen evakuasi berdasarkan hasil proyeksi zona bahaya dan upaya pelatihan tanggap darurat yang lebih luas akan meningkatkan tingkat kesiapsiagaan masyarakat dan manajemen bencana.

 

ABSTRACT

Title: Analysis of Technological Disaster Preparedness from Fertilizer Factory on Hazard Zone Projection Aspect

Background: Technological failure in the fertilizer industry is unavoidable mainly because of the state of the fertilizer factory with old technology and hazardous chemicals as production raw materials, so strategic technological disaster management is needed. This study aims to describe public knowledge regarding the dangers of ammonia gas dispersion and the preparation of hazard zone projections as an important input in disaster management of the technology.

Method: Survey research with cross-sectional design. The research sample was 548 people who had met the inclusion and exclusion criteria of the study. Secondary data from the Meteorology, Climatology and Geophysics Agency of the Sultan Mahmud Badaruddin II Meteorological Station for meteorological data for the January – December period is used for hazard zone projections.

Result: Research results are presented in frequency distribution and hazard zone projections are presented in images that have been mapped with Google Earth. Consequence analysis of the 4 worst case scenarios when an ammonia tank ruptures, explains that the risk area for rupture under the tank (scenario 2) is 3 times larger than that of rupture above the tank (scenario 1) for a hole size of 1 cm diameter. The risk area for heavy gas (scenario 4) is 2 times wider than the predicted result of the gaussian model (scenario 3).

Conclusion: Preparation of evacuation management based on the results of hazard zone projections and wider emergency response training efforts will increase the level of community preparedness and disaster management

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (731KB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (562KB)    Indexing metadata
Keywords: Bencana Teknologi; Lingkungan; Pabrik; Zona Bahaya

Article Metrics:

  1. Tauseef, S. M., Abbasi, T., Suganya, R., & Abbasi, S. A. A critical assessment of available software for forecasting the impact of accidents in chemical process industry. International Journal of Engineering, Science and Mathematics. 2017. 6(7), 269-289
  2. Jung, S., Woo, J., & Kang, C. Analysis of severe industrial accidents caused by hazardous chemicals in South Korea from January 2008 to June 2018. Safety science. 2020. 124, 104580. https://doi.org/10.1016/j.ssci.2019.104580
  3. Vishwakama, N., Arun, P. A., Nandan, A., & Yadav, B. P. Scenario Evaluation of Domino Effects in Process Industries: A Review. Advances in Industrial Safety, 2020. 85-99. https://doi.org/10.1007/978-981-15-6852-7_7
  4. Baalisampang, T.; Abbassi, R.; Garaniya, V.; Khan, F.; Dadashzadeh, M. Review and analysis of fire and explosion accidents in maritime transportation. Ocean Eng. 2018, 158, 350–366. https://doi.org/10.1016/j.oceaneng.2018.04.022
  5. Ahn, Y. J., Yu, Y. U., & Kim, J. K. Accident Cause Factor of Fires and Explosions in Tankers Using Fault Tree Analysis. Journal of Marine Science and Engineering, 2021. 9(8), 844. https://doi.org/10.3390/jmse9080844
  6. Chen, G., Huang, K., Zou, M., Yang, Y., & Dong, H. A methodology for quantitative vulnerability assessment of coupled multi-hazard in Chemical Industrial Park. Journal of Loss Prevention in the Process Industries, 2019.58, 30- 41. https://doi.org/10.1016/j.jlp.2019.01.008
  7. A., & Kornakova, M. (Eds.).Urban planning for disaster recovery. Butterworth-Heinemann. Elsevier nc.2017. doi: https://dx.doi.org/10.1080/08111146.2018.1443560
  8. Rampangilei, W. Panduan Kesiapsiagaan Bencana untuk Keluarga. Jakarta: Direktorat Kesiapsiagaan Badan Nasional Penanggulangan Bencana. 2018
  9. Sitorus, P. B. R. Budaya Kerentanan dan Kapasitas Masyarakat Kepulauan Mentawai Menghadapi Bencana Gempa Bumi dan Tsunami. Jurnal Vokasi Indonesia, 2018. 16(2): 25-32
  10. Filippelli, G., Anenberg, S., Taylor, M., van Geen, A., & Khreis, H. New approaches to identifying and reducing the global burden of disease from pollution. GeoHealth, 2020. 4(4), e2018GH000167. https://doi.org/10.1029/2018GH000167
  11. Pak, S., & Kang, C. Increased risk to people around major hazardous installations and the necessity of land use planning in South Korea. Process Safety and Environmental Protection, 2021,149, 325-333. https://doi.org/10.1016/j.psep.2020.11.006
  12. Kwak, D., Lei, Y., & Maric, R. Ammonia gas sensors: A comprehensive review. Talanta, 2019, 204, 713-730. March. https://doi.org/10.1016/j.talanta.2019.06.034
  13. Anjana NS, Amarnath A, Harindranathan Nair MV. Toxic hazards of ammonia release and population vulnerability assessment using geographical information system. Journal of Environmental Management. 2018;210:201-209. https://doi.org/10.1016/j.jenvman.2018.01.021
  14. Siniša, S., Nikola, Z., Ilija, T, Željko, S., & Bojana, R. Ammonia-risk distribution by logistic subsystems and type of consequence. Burns, 2020. 46(2), 360-369.Jafari MJ, Matin AH, Rahmati A, et al. Experimental optimization of a spray tower for ammonia removal. Atmos Pollut Res. 2018;9:783-790. https://doi.org/10.1016/j.apr.2018.01.014
  15. Namboothiri, N. V., & Soman, A. R. Consequence assessment of anhydrous ammonia release using CFD‐ probit analysis. Process Safety Progress, 2018,37(4), 525-534. https://doi.org/10.1002/prs.11970
  16. Pratama, A., & Sofyan, A. Analisis Dispersi Pencemar Udara PM10 di Kota Bandung Menggunakan WRFCHEM Data Asimilasi. Jurnal Teknik Lingkungan, 2020, 26(1), 19-36
  17. Cheliotis, M., Boulougouris, E., Trivyza, N. L., Theotokatos, G., Livanos, G., Mantalos, G., Venetsanos, A. Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry. Energies. 2021. Vol.14, Issue 11. https://doi.org/10.3390/en14113023
  18. Rizzo, A., Vandelli, V., Buhagiar, G., Micallef, A. S., & Soldati, M. Coastal vulnerability assessment along the north-eastern sector of Gozo Island (Malta, Mediterranean Sea). Water, 2020, 12(5), 1405. https://doi.org/10.3390/w12051405
  19. Tancogne-Dejean, M., & Laclémence, P. Fire risk perception and building evacuation by vulnerable persons: Points of view of laypersons, fire victims and experts. Fire safety journal, 2016.80, 9-19. https://doi.org/10.1016/j.firesaf.2015.11.009
  20. Bathrinath, S., Devaganesh, J., Santhi, B., & Saravanasankar, S. The Adverse Human Health Effects Due To Ammonia, Hydrogen Sulphide and Chlorine in Process Industry: A Review. Int. J. Mech. Prod, 2018. 8, 394-402
  21. BNPB. Panduan Kesiapsiagaan Bencana untuk Keluarga. Jakarta: BNPB.2018
  22. Tahmid, M., Dey, S., & Syeda, S. R. Mapping human vulnerability and risk due to chemical accidents. Journal of Loss Prevention in the Process Industries, 2020, 68, 104289. https://doi.org/10.1016/j.jlp.2020.104289
  23. Seo S-K, Yoon Y-G, Lee J, Na J, Lee C-J. Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents. Reliab Eng Syst Saf [Internet]. 2022;218:108102. Available from: https://www.sciencedirect.com/science/article/pii/S0951832021005998.
  24. Ball MEE, Smyth S, Beattie VE, McCracken KJ, McCormack U, Muns R, et al. The Environmental Impact of Lowering Dietary Crude Protein in Finishing Pig Diets—The Effect on Ammonia, Odour and Slurry Production. Vol. 14, Sustainability. 2022. https://doi.org/10.3390/su141912016

Last update:

  1. An Analysis of Disaster Preparedness and Mitigation in Ammonia Loading Systems

    Ratna Ayu Ratriwardhani, Moch. Sahri, Merry Sunaryo, A. Saregar, R. Umam, A. Rahmat. E3S Web of Conferences, 482 , 2024. doi: 10.1051/e3sconf/202448203005

Last update: 2024-03-27 17:45:06

No citation recorded.